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Kwon and Legge (2011) found that high levels of letter recognition accuracy are possible even when letters are severely low-
pass filtered (0.9 cycles per letter). How is letter recognition possible with such severe reduction in the spatial resolution of
stimulus letters? Clues may come from understanding the possible interaction between contrast and spatial resolution in letter
recognition. Here, we asked what the effect is on the contrast threshold for detecting and recognizing letters as the spatial-
frequency cutoff of letters is reduced (in cycles per letter). We measured contrast thresholds of seven normally sighted
subjects for detecting and recognizing single letters of the English alphabet. The letters were low-pass filtered with several
cutoff frequencies (0.9–3.5 cycles per letter, including unfiltered letters). We found that differences in contrast thresholds
between detection and recognition increased substantially with decreasing cutoff frequency. We also incorporated the human
contrast sensitivity function into an ideal observer model and found qualitatively good agreement between the pattern of
performance for the model and our human subjects. Our findings show that the human visual system requires higher contrast
for letter recognition when spatial resolution is severely limited. Good agreement between the model and human subjects
shows that the greater contrast requirement for recognizing low-pass letters is due to a reduction in the information content of
the letters rather than a change in human visual processing. The reduction in stimulus information may be due to increasing
stimulus similarity associated with a reduction in spatial-frequency cutoff.
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Introduction

Letter recognition is thought to rely on the shape
and arrangement of individual features of a letter. A
great deal of research has focused on identifying a set of
pattern features (such as line segments and curves)
mediating letter recognition (Blommaert, 1988; Bouma,
1971; Dunn-Rankin, 1968; Fiset et al., 2008; Geyer,
1970; Geyer & DeWald, 1973; Gibson, 1969; Laughery,
1969; Luce, 1963; Rumelhart & Siple, 1974; Townsend,
1971). Insight into the nature of these features comes
from the observation that high levels of letter
recognition accuracy are possible even when letters
are severely blurred by low-pass spatial-frequency
filtering (Kwon & Legge, 2011; Loomis, 1990). These
studies showed that people can achieve 80% correct for
recognition of 1 out of 26 when the letters are low-pass
filtered with the cutoff frequency of 0.9 cycles per letter

(CPL). This low resolution has an equivalent sampling
rate (,2 · 2) that would allow discrimination only
among fewer than 16 patterns if the samples were
binary (Shannon, 1948).1 Furthermore, the cutoff
frequency of 0.9 CPL is considerably lower than the
known optimal spatial frequency for letter recognition
(e.g., Chung, Legge, & Tjan, 2002; Gervais, Harvey, &
Roberts, 1984; Ginsburg, 1980; Majaj, Pelli, Kurshan,
& Palomares, 2002; Oruc & Landy, 2009; Parish &
Sperling, 1991). It has been reported that the peak of
the spatial-frequency band most useful for letter
recognition ranges from about 1.7 cycles/letter for tiny
characters (0.168) to 7.7 cycles/letter for huge charac-
ters (168; Majaj et al., 2002).

How is letter recognition possible with such severe
reduction in the spatial resolution of stimulus letters?
Clues may come from understanding the possible
interaction between contrast and spatial resolution in
letter recognition. Legge, Rubin, and Luebker (1987)
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studied the role of contrast in reading speed and found
that as letter size approached the acuity limit, more
contrast was needed to achieve a criterion reading
speed. An interaction is also found in letter recognition
in peripheral vision, in which as acuity declines, images
of letters (Melmoth & Rovamo, 2003; Rovamo &
Melmoth, 2000) and faces (Mäkelä, Näsänen, Rovamo,
& Melmoth, 2000; Melmoth, Kukkonen, Mäkelaä, &
Rovamo, 2000) need to be scaled not only in size but
also in contrast to match recognition performance in
central vision. The interaction between contrast and
spatial resolution of letters has been recognized in
clinical practice, and there has been interest in
measuring visual acuity with low-contrast charts. For
example, the Regan Letter Chart, a low-contrast letter-
acuity chart, has been used to assess the effects of
reduced contrast on visual acuity (Regan, 1988; Regan
& Neima, 1983).

Our interest in understanding letter recognition
under conditions of low-resolution viewing is motivat-
ed by real-world applications. Examples include
reading near the acuity limit (highway signs at a great
distance) or coping with fog, low-resolution display
rendering, refractive error, or low vision. To our
knowledge, no study has addressed contrast require-
ments for recognizing letters with low resolution. Our
primary goal is to examine the impact on letter
recognition of the interaction between the contrast of
letters and the spatial resolution with which they are
rendered. More specifically, as the spatial-frequency
cutoff of letters is reduced (in cycles per letter), what is
the effect on the contrast threshold for detecting and
recognizing letters?

A second goal is to determine whether this interac-
tion helps us to understand differences in letter
recognition between central and peripheral vision or
between upper and lowercase letters. Differences in the
shape of the human contrast sensitivity function (CSF)
mean that letter stimuli in peripheral vision have
reduced spatial-frequency representations for neural
processing. Uppercase letters may be thought to be
rendered with lower resolution than lowercase letters
because they possess fewer distinguishable spatial
features (e.g., no ascenders or descenders). The idea
that some stimulus conditions are more vulnerable to
low spatial resolution than others is indeed substanti-
ated by our related study (Kwon & Legge, 2011). In
that study, we found that to achieve reliable letter
recognition (80% accuracy), spatial resolution of letters
had to be higher (manifested as a larger minimum
spatial-frequency requirement) in peripheral (1.06
cycles per letter) than central vision (0.9 cycles per
letter) and for uppercase (1.14 cycles per letter) than
lowercase letters (0.9 cycles per letter). In the current
experiments, we measured contrast thresholds for
detecting and recognizing single letters in central and

peripheral vision, drawn at random from the 26 lower
and uppercase letters of the English alphabet. The
letters were low-pass filtered (blurred) with various
cutoff frequencies. We used the size of the gap between
detection and recognition contrast thresholds for letters
as a measure of the contrast requirement in the letter
recognition task. We did so because the gap between
detection and recognition thresholds would reflect the
true contrast requirement for recognition after factor-
ing out any possible differences in detection threshold
induced by different stimulus conditions. Comparing
recognition and detection thresholds in this way also
provided us with a useful way of understanding the
performance of the ideal-observer model and the
similarity model to be discussed later.

A third goal of the present study is to examine
whether the greater contrast requirement for recogni-
tion of letters at low spatial resolution, if any, is
inherent in the stimulus or an intrinsic property of
human visual processing. An ideal-observer model, a
theoretical device that yields the best possible perfor-
mance for a given task via a strategy of choosing the
maximum posterior probability (Green & Swets, 1966;
Tanner & Birdsall, 1958), is a quantitative method for
demonstrating the stimulus constraints on perfor-
mance. Some limitations on early visual processing
such as visual acuity and contrast sensitivity can be
thought of as transforming the stimulus input, produc-
ing an ‘‘equivalent’’ visual input. For instance, the
human CSF puts a lower bound on contrast that can be
detected. For modeling purposes, it can be useful to
treat these early sensory limitations as transformations
of the stimulus input. Previous studies of letter
recognition have demonstrated that incorporating the
human CSF in an ideal-observer model can explain
aspects of the spatial-frequency characteristics of
human letter recognition (Chung et al., 2002; Kwon
& Legge, 2011; Watson & Ahumada, 2008). We
incorporated a human CSF into the ideal-observer
model (we now call it the CSF-noise-ideal-observer
model). We tested this model for the tasks of low-pass–
filtered letter detection and recognition for comparison
with human performance.

Method

Subjects

Seven subjects were recruited from the University of
Minnesota campus. They were all native English
speakers with normal or corrected-to-normal vision.
The mean acuity (Lighthouse distance acuity chart) was
�0.11 logMAR (Snellen 20/16), ranging from �0.24
(Snellen 20/11) to 0.02 (Snellen 20/21). The mean LOG
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contrast sensitivity (Pelli-Robson chart) was 1.74, with
a range from 1.65 to 1.90. Subjects received either
monetary compensation or class credit for their
participation. The experimental protocols were ap-
proved by the Internal Review Board of the University
of Minnesota, and written informed consent was
obtained from all subjects prior to the experiment.

Stimuli

Contrast definitions

The stimulus contrast is expressed as the Weber
contrast defined to be

Ci ¼
Li � L0

L0
; ð1Þ

where Li is the luminance of the ith pixel of an image
and L0 is the mean luminance of the stimulus image.
Once we define the contrast of Li as Weber contrast,
then the root-mean square (RMS) contrast of the image
is expressed follows:

CRMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m

Xm
i¼1

C2
i

s
; ð2Þ

where m is the number of pixels in an image.
Contrast was defined for both filtered and unfiltered

images as follows: After filtering, each pixel value of
the filtered image was converted into a value of Ci by
the Equation 1 (i.e., constructing a contrast function
for each letter image). The nominal contrast of the
filtered image was defined as the maximum contrast
among all the pixel contrast values. This max Ci value
was used for the purpose of measuring contrast
thresholds for detection and discrimination tasks.
Then, the RMS contrast of an image for given
threshold level (i.e., the RMS contrast of letter ‘‘x’’
was used to define the given threshold level contrast)
was computed and used for all of the data analysis and
plotting. The reason for using the nominal contrast
(defined as Weber contrast) for threshold measurement
rather than RMS contrast is that rendering an image at
a specific contrast level is more straightforward with
the nominal contrast.

Letter images

The 26 lowercase and uppercase letters of the English
alphabet were used (Courier font), with x-height of 18

(31 pixels) at the viewing distance of 60 cm. The letter
images were constructed in Adobe Photoshop (version
8.0) and MATLAB (version 7.4). A black single letter
was generated on a uniform gray background of 400 ·
400 pixels.

Image filtering

The images were blurred using a third-order Butter-
worth low-pass filter in the spatial-frequency domain.
Cutoff frequencies of the filter ranged from 0.9 CPL to
3.5 CPL depending on task and stimulus conditions.
The filter function is

f ¼ 1

1þ r
c

� �2n� � ; ð3Þ

where r is the radial frequency, c is the cutoff spatial
frequency, and n is the filter’s order.

The filter’s response function is shown in Figure 1.
Figure 2 shows samples of filtered and unfiltered letter
images.

Image display on screen

To present the letter images on the monitor, we
mapped the values of the contrast function to the
corresponding luminance values of the monitor, and
then each luminance value was mapped to the
corresponding 256 gray levels using a lookup table.
The 0 value of the contrast function was mapped to the
mean luminance of the monitor (52 cd/m2).

The stimuli were generated and controlled using
Matlab (version 7.4) and Psychophysics Toolbox
extensions (Mac OS X; Brainard, 1997; Pelli, 1997),
running on a Mac Pro computer. The display was a 19-
inch CRT monitor (refresh rate: 75 Hz; resolution:
1152 · 870). Stimuli were rendered with a video card
with 8-bit input resolution and 14-bit output resolution
using Cambridge Research System Bitsþþ. Luminance
of the display monitor was linearized using an 8-bit
lookup table in conjunction with photometric readings
from a Minolta CS-100 chroma meter. The image
luminance values were mapped onto the values stored
in the lookup table for the display.

Procedure

Measuring contrast detection thresholds for letters

Contrast detection thresholds were measured with a
temporal two-alternative forced-choice staircase proce-
dure. A 3-down 1-up staircase rule was adopted,
yielding a threshold criterion of 79.4% correct (Weth-
erill & Levitt, 1965), and the step size of the staircase
was 1 dB. The geometric mean of 10 staircase reversals
was taken as the contrast threshold for each staircase
run. Detection thresholds were obtained from letter
images with different spatial-frequency cutoffs ranging
from 0.9 CPL to 3.5 CPL and also unfiltered images.
Slightly different sets of cutoffs were used for different
testing conditions (see Table 1). This was because the
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minimum cutoffs for a criterion level of recognition
varied across conditions (Kwon & Legge, 2011).

In each trial, there were two 150-ms intervals each
marked by an auditory beep, separated by 500 ms, one
containing the stimulus, selected at random from a to z
or A to Z. The subjects’ task was to judge which
stimulus interval contained a letter image by pressing
one of two keys. (They did not have to identify the
letter.) Auditory feedback was given whenever a wrong
answer was made. Subjects were given a series of
practice trials before the experimental test.

Measuring contrast recognition thresholds for letters

Recognition contrast thresholds were measured with
the same staircase procedure just described for the
detection task. In each trial, subjects were presented
with a stimulus letter, randomly selected from a to z or
A to Z for 150 ms at a given location on a display
screen. Next, the display was set to average luminance,
and after a brief pause (500 ms), 26 thumbnail versions
of the letter images (56 · 56 pixels in size) appeared on
the screen. The subject identified the target stimulus by
clicking on one of these 26 thumbnail images. To
prevent subjects from using an image-matching strat-
egy, a different font (Arial) and the other lettercase
were used for the thumbnail images. Auditory feedback
was given whenever a wrong answer was made.

Subjects were given a series of practice trials before
the experimental test.

For the peripheral viewing condition (in both
detection and recognition tasks), a small cross in the
center of the stimulus served as a fixation mark to
minimize eye movements throughout the experiment. A
chin rest was also used to reduce head movements.

The experiment consisted of 36 blocks: 4 (fovea) or 5
(peripheral) cutoffs · 2 lettercases (upper and lower-
case) · 2 tasks (detection and recognition) tested over 2
separate days. All subjects participated in all the
conditions. The order of blocks was counterbalanced
across subjects.

Results

Contrast thresholds for detection and
recognition of letters

Figure 3 shows plots of RMS contrast threshold as a
function of filter cutoff spatial frequency for both
detection (black circles) and recognition (red squares).
Recognition required higher RMS contrast thresholds
than detection. Detection thresholds were nearly
constant across different cutoff frequencies, except for
a noticeable threshold elevation for low-cutoff frequen-
cies in central vision (up to 14% change) and for high-
cutoff frequencies in the periphery (up to 20% change).
This pattern of results can be accounted for by a shift in
the peak of the CSF from a higher spatial frequency
(;four cycles per degree) in the fovea to a lower spatial
frequency (;one cycle per degree) in the periphery.
Unlike the detection data, recognition thresholds
decreased substantially with increasing cutoff frequen-
cy and reached asymptote near 2 CPL. Both detection
and recognition thresholds were larger in peripheral
than central vision.

Ratio of recognition to detection thresholds

The gap between detection and recognition RMS
contrast thresholds was quantified as the ratio of

Figure 1. The response function of the third-order Butterworth

filter with cutoff frequency of 1.5 cycles per degree, equivalent to

1.5 cycles per letter for a 18 letter size.

Figure 2. Samples of an unfiltered letter and low-pass–filtered letters with varying cutoff frequencies.
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recognition to detection RMS contrast thresholds
equivalent to their difference on a logarithmic scale.

We conducted an analysis of variance (ANOVA) on
threshold ratio: 4 (cutoff frequency: 1.2, 2, 3.5,
unfiltered) · 2 (visual field: fovea, periphery) · 2
(lettercase: lower, upper) repeated-measures ANOVA
with cutoff frequency, visual field, and lettercase as
within-subject factors.2

There were significant main effects of cutoff, F(3, 18)
¼ 34.04, p , 0.001, visual field, F(1, 6) ¼ 14.33, p ¼
0.009, and lettercase, F(1, 6) ¼ 10.20, p ¼ 0.019, on
threshold ratio. The ratio increased substantially with
decreasing cutoff frequency (Figure 4). For example,
for the foveal lowercase condition, the ratio increased
from 1.41 (60.07) for the unfiltered letters to 8.93
(61.07) for the most blurred letters (i.e., 0.9 CPL). The

Figure 3. Mean threshold RMS contrast for letter detection and recognition (n ¼ 7) as a function of cutoff spatial frequency. Error bars

show 61 standard error of the mean (SEM).

Lettercase
Lowercase Uppercase

Visual field Fovea Periphery Fovea Periphery

Cutoff Frequency (CPL) 0.9 NA 1.1 NA

1.2 1.2 1.5 1.5

2 2 2 2

3.5 3.5 3.5 3.5

Unfiltered Unfiltered Unfiltered Unfiltered

Table 1. Spatial-frequency cutoffs used for different stimulus conditions.
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ratios were larger in peripheral than central vision and
also larger for uppercase than lowercase letters.

We also found significant two-way interactions
between cutoff frequency and lettercase, F(3, 18) ¼
5.81, p ¼ 0.006, between cutoff frequency and visual
field, F(3, 18) ¼ 10.48, p , 0.001, and between visual
field and lettercase, F(1, 6) ¼ 8.14, p , 0.029. The
differences in the ratios between the two lettercases and
between the two visual field locations were more
pronounced at lower cutoff frequencies.

The larger gap between recognition and detection
thresholds for low-cutoff frequencies makes clear that
recognition of very low-resolution letters has a higher
contrast requirement. Threshold ratios were greater in
peripheral than central vision and for uppercase than
lowercase letters.

The average ratio of recognition to detection
thresholds across lettercases and visual fields for the
unfiltered letters was 1.8 (60.6). This value is close to
the mean value of 1.7 found by Pelli, Burns, Farell, and

Moore-Page (2006), who also measured contrast
detection and recognition thresholds for letters. Their
value was based on an average across many fonts for
single letters and short words. These authors used the
threshold ratio in their theoretical derivation of the
number of feature detectors for letter recognition. They
found that the recognition/detection ratio was constant
at 1.7 across sets of letters of different complexity and
used this result to conclude that identifying 1 of 26
letters (at 64% correct) is based on 7 6 2 feature
detections.

The plots of the threshold ratio in Figure 4 indicate
that the ratio is constant for high-cutoff frequencies
and grows for cutoff frequencies below a critical value.
We refer to this critical point as the ‘‘contrast-
dependent’’ critical cutoff frequency for letter recogni-
tion (hereafter critical cutoff frequency for conve-
nience). We use this term because it refers to the low-
pass cutoff frequency required to recognize letters at
minimum contrast.

Figure 4. Mean ratios of recognition to detection RMS contrast thresholds as a function of cutoff spatial frequency (n¼7). Error bars show

61 SEM.
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To estimate this critical cutoff frequency, we fitted
the graphs of contrast ratio versus cutoff frequency
(Figure 4) with a two-limbed function (Equation 4).
This function contains a rising straight line and a
horizontal straight line (Figure 5). The X-coordinate of
the intersection point is called the contrast-dependent
critical cutoff frequency. The Y-coordinate is called the
minimum contrast ratio.

Y ¼ b; ifX � c ð4Þ

Y ¼ a*Xþ b� a*c; ifX, c;

where Y is contrast ratio, X is spatial-frequency cutoff
frequency, and a, b, and c are free parameters.

As shown in Figure 5, the average critical cutoff
frequency across subjects for lowercase letters in the
fovea was 1.47 CPL (60.04), and the minimum
(asymptotic) contrast ratio was 1.56 (60.05). Table 2
summarizes estimated critical cutoff frequencies and
minimum contrast ratios for our four stimulus condi-
tions. Note that values of both critical cutoff frequency
and minimum contrast ratio increased from central to
peripheral vision (e.g., t(6)¼�3.04, p¼ 0.023), and also

from lowercase to uppercase letters (e.g., t(6)¼�4.46, p
¼ 0.004).

Modeling

Model overview

We now describe the implementation of the CSF-
noise-ideal-observer model (hereafter the model) for
letter detection and recognition. This model is a
computational device that includes an optimal recog-
nition decision rule and takes into account an internal
source of noise and the shape of the human CSF. This
model is very similar to the CSF-ideal-observer model
described by Chung et al. (2002). If the information
content of the stimulus limits human performance
rather than inherent human visual processing, we
would expect the pattern of results of the model to be
similar to our empirical findings.

Many prior studies comparing human performance
to an ideal observer have included noise-perturbed
stimuli. In principle, the ideal observer is able to

Figure 5. Mean contrast ratio as a function of cutoff spatial frequency (n ¼ 7). (a) Lowercase letters. (b) Uppercase letters. Each panel

contains two data sets: one from the fovea (open circles) and the other from the periphery (closed circles). Error bars show 61 SEM. Data

were fitted with the two-limbed function. The horizontal arrows indicate estimated minimum contrast ratios. The vertical arrows indicate

estimated critical cutoff frequencies.

Lowercase Uppercase

Fovea Periphery Fovea Periphery

Critical cutoff frequency (CPL) 1.47 (60.05) 1.80 (60.06) 1.95 (60.18) 2.25 (60.12)

Minimum contrast ratio 1.56 (60.04) 1.99 (60.15) 1.46 (60.13) 2.64 (60.40)

Table 2. Critical cutoff frequencies yielding minimum contrast ratios (n ¼ 7). Notes: The numbers in parentheses indicate 61 SEM.
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perform with 100% accuracy if the stimulus is noise
free. The noise is added to the stimulus to ensure that
even an optimal decision maker will make incorrect
decisions and drop below perfect performance. In our
study, no noise was added to the stimulus. Instead, we
constructed the model to have a source of additive
noise following stimulus encoding and prior to the
decision process, which may mimic the internal noise of
human visual processing. The amplitude of this noise
was a parameter in the model. The noise parameter was
set by varying its value to equate overall performance
levels between the model and our human subjects for
the unfiltered lowercase foveal condition. Our goal was
then to determine whether the model and humans show
the same pattern of threshold changes across stimulus
cutoff frequency, central and peripheral vision, and
upper and lowercase letters.

The model has a CSF filter3 and an additive noise
source situated between the stimulus and an optimal
classifier as depicted in Figure 6. The CSF filter is a
linear filter with a shape identical to a human CSF. The
model performs letter detection and recognition in a
procedure mimicking the human psychophysical task.
In each trial, the model is presented with a stimulus (the
contrast function associated with the low-pass–filtered
letter stimulus). This function is then filtered by the
CSF, and independent samples of Gaussian noise are
added to each pixel. The model knows the probabilities
of the possible signals and the statistics of the added
Gaussian noise.

The model optimizes performance for detection or
recognition by choosing the maximum posterior
probability of the signal arising from 1 of the 26
possible stimulus images given the noisy input stimulus
(Green & Swets, 1966; Tanner & Birdsall, 1958; Tjan,
Braje, Legge, & Kersten, 1995). The computation of the
maximum posterior probability is equivalent to mini-
mizing the Euclidean distance between the noisy input
stimulus and its stored noiseless templates, often called
template matching. But note that the algorithms are

slightly different for detection and recognition tasks
(details are provided in Appendix A). This numerical
analysis was done through Monte Carlo simulations.

The model’s contrast thresholds for detection and
recognition were obtained via the same staircase
procedure (;79.4% accuracy) used for human observ-
ers. The contrast of a stimulus image was defined and
computed in the same way as those used for the human
observers (see the Method section). The contrast
thresholds were measured with both lowercase and
uppercase letters in foveal and peripheral viewing
conditions using the identical cutoff frequencies used
for human observers.

Our model used empirical CSFs from two subjects
who also participated in our detection and recognition
tasks. The CSFs were obtained from a detection task
using a vertical sinewave-grating (the center of the
patch was in cosine phase) with cosine envelope
(subtending 1.48 visual angle at the viewing distance
of 60 cm) and stimulus duration of 150 ms. The CSFs
were measured at the fovea and at 108 in the lower
visual field (Figure 7). The CSFs were measured with
similar spatial and temporal stimulus characteristics
used in our empirical letter detection and recognition
tasks.

Comparison of model and human results

Figure 8 shows plots of the model’s RMS contrast
thresholds as a function of cutoff frequency for both
detection (black circles) and recognition (red squares).
The model’s behavior is qualitatively similar to human
behavior. The model required larger RMS contrast
thresholds for recognition than detection. Like human
observers, recognition thresholds for the model in-
creased with decreasing cutoff frequency. Also similar
to humans, recognition thresholds of the model were
higher in peripheral than central vision and were higher

Figure 6. A schematic diagram of the CSF-noise-ideal-observer model.
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for uppercase than lowercase letters. One noticeable
difference between the model and human observers is
that detection thresholds of the model decreased with
decreasing cutoff frequency. This is probably due to
decreasing stimulus uncertainty associated with blurry
letters.4

Consistent with human observers, the ratio of
recognition to detection thresholds increased substan-
tially with decreasing cutoff frequency. For example,
for the foveal lowercase condition, the model’s ratio
increased from 1.46 (60.02) for the unfiltered letters to
6.77 (60.11) for the most blurred letters (0.9 CPL;
Figure 9). The corresponding human ratios were 1.41
(60.07) for the unfiltered letters and 8.93 (61.07) for
the most blurred letters (i.e., 0.9 CPL).

Like human observers, the model also exhibited its
maximum ratio for the peripheral uppercase letters
with the cutoff frequency of 1.5 CPL (10.40 6 1.65)
and its minimum ratio for the unfiltered foveal
lowercase letters (1.46 6 0.02). The corresponding
human ratios were 10.23 (60.16) and 1.41 (60.07),
respectively.

Relative to detection threshold, humans seem to be
as effective as an ideal model in recognizing unblurred
letters but less able to use the information in blurry
letters; humans need a greater increase in contrast to
recognize the blurry letters, as demonstrated by the

steeper rise in the human threshold ratio at the lowest
cutoff frequencies (Figure 9).

Discussion and conclusions

In the present study, we demonstrated that as spatial
resolution for rendering letters decreases, the visual
system requires higher contrast for letter recognition.
This means that there is a larger gap between contrast
thresholds for letter detection and recognition. The gap
between these two thresholds was quantified as the
ratio of RMS contrast thresholds for letter recognition
and detection. We found larger recognition/detection
contrast ratios for letters with lower cutoff frequencies.
The contrast ratios were even larger for stimulus
conditions that suffer from poor spatial resolution
(peripheral vision) and fewer distinguishable spatial
features (uppercase letters). To our knowledge, this is
the first empirical evidence showing a higher contrast
requirement for letters with low spatial resolution.

Previous studies (e.g., Legge et al., 1987) have shown
that reading and letter recognition are usually highly
tolerant to contrast reduction for a wide range of letter
size (0.258–28). They showed that for normally-sighted
individuals, reading rate is little affected by the contrast
of letters over a 1-log-unit range from about 100% to
10%. But the current results imply that even for letters
in this size range, there is a higher contrast requirement
when the letters have very low spatial resolution.

Our results may be relevant to people with central-
field loss from macular degeneration who must rely on
their peripheral vision to read. We found that there is
an even higher contrast requirement for peripheral
vision than central vision for letters rendered in low
resolution. As mentioned earlier in the Introduction,
the need for a larger contrast reserve for peripheral
viewing has been demonstrated by previous studies
(Mäkelä et al., 2000; Melmoth et al., 2000; Melmoth &
Rovamo, 2003; Rovamo & Melmoth, 2000). Those
authors measured contrast sensitivity for face and letter
identification to see if foveal and peripheral perfor-
mance would become equivalent by magnification of
image size only. They found that to achieve equivalent
performance, both the size and the contrast of the
image needed to increase in the periphery.

Furthermore, Rubin and Legge (1989) studied the
effect of contrast on reading performance in 19 low-
vision observers with a wide range of visual disorders
and degrees of vision loss. They found that unlike
normally-sighted individuals, visually impaired individ-
uals showed less tolerance to contrast reduction. Thus,
as the clinical community already knows through
practical experience, contrast is an important visual
dimension in designing low-vision reading aides.

Figure 7. The CSF of human observers (averaged across two

subjects) at the fovea (open circles) and at 108 lower visual field

(closed circles). The CSFs were obtained from a detection task

using a vertical sinewave-grating (the center of the patch was in

cosine phase) with cosine envelope (subtending 1.48 visual angle

at the viewing distance of 60 cm) and stimulus duration of 150 ms.

The CSFs were measured with similar spatial and temporal

stimulus characteristics used in our empirical letter detection and

recognition tasks.
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Using the ideal observer model, we further asked
whether the higher contrast requirement for letters at
low spatial resolution exhibited by human observers is
due to the information content of the stimulus or due to
intrinsic properties of human visual processing. The
qualitatively similar pattern of results for ideal and
human observers makes it likely that human perfor-
mance is primarily due to the information content of
the stimuli.

What stimulus properties account for the higher
contrast requirement for recognizing blurry letters?
Letter similarity has been studied extensively (Blom-
maert, 1988; Bouma, 1971; Dunn-Rankin, 1968; Geyer,
1970; Geyer & DeWald, 1973; Gibson, 1969; Laughery,
1969; Loomis, 1990; Luce, 1963; Rumelhart & Siple,
1974; Townsend, 1971). It has been shown that the
more similar the letters, usually represented by overlap
in their features, the more likely those letters are to be
confused with each other, resulting in poor recognition

performance. Intuitively, an increase in blur level
brings about an increase in similarity among letters.
To quantify the similarity among letters filtered with a
given cutoff frequency, we computed normalized cross-
correlations between all the possible pairs of letters and
obtained the mean correlation value averaged across all
the pairs. In pattern recognition, normalized cross-
correlation has often been used to measure similarity
between sets of images (Duda & Hart, 1973; Watson &
Ahumada, 2008). The circles in Figure 10a represent
normalized cross-correlation values for the different
spatial-frequency cutoffs and four stimulus conditions
(lowercase and uppercase letters; foveal and peripheral
viewing conditions). As we expected, the similarity
(mean cross-correlation) increased monotonically with
increasing blur level. Using regression analysis (dotted
lines in Figure 10a), we found that 69% (the model)
and 77% (human observers) of the variance in the

Figure 8. Mean threshold RMS contrast for letter detection (black circles) and recognition (red squares) from the model. Each mean

threshold is based on 100 thresholds, each obtained from a staircase procedure using 50 reversals. Error bars show 61 SEM.
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recognition:detection threshold ratios were accounted
for by this letter similarity measure.

Why should increasing similarity require higher
contrast for letter recognition? Greater similarity in
the presence of a fixed level of noise means lower SNR,
where signal refers to discriminability among letters. To
achieve criterion performance associated with a given
level of SNR, a decrease in signal strength (discrimi-
nability) due to increasing blur can be compensated for
by an increase in the contrast of letters.

We also asked whether a letter recognition model
incorporating a measure of similarity would exhibit a
higher contrast threshold for recognizing blurry letters.
Loomis (1990) described a model of letter recognition
and used it to account for human recognition of tactile
and visual letters from different fonts. His model
generated a theoretical confusion matrix constructed

from an internal representation of letter similarity,
which he compared with the empirical confusion
matrices generated by his subjects.

Briefly stated, in Loomis’s model, stimulus encoding
involves transformation of the stimulus into an internal
representation via linear filtering (convolution with a
point-spread function) and nonlinear filtering (a
compressive nonlinear transducer at the neuronal
stage). Response selection was based on a measure of
similarity (Getty et al., 1979; Shepard, 1958, 1987) that
is reciprocally related to the Euclidean distance
between transformed stimulus letter and transformed
template letter. Our implementation5 of the Loomis
model showed that decreasing cutoff frequency resulted
in increasing similarity for a fixed contrast level,
whereas increasing stimulus contrast at a fixed cutoff
frequency resulted in decreased similarity. This means

Figure 9. Mean ratios of recognition to detection RMS contrast thresholds as a function of cutoff frequency for our CSF-noise-ideal-

observer model. Each panel includes human data from Figure 4 for comparison (red bar for the model; blue bar for human data). Error

bars show 61 SEM.
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that for a constant level of recognition performance, a
decrease in cutoff frequency would need to be
accompanied by an increase in stimulus contrast.
Figure 10b compares recognition data from our human
observers, our CSF-noise-ideal-observer model, and
the Loomis model. All three show a very similar pattern
of performance, although the human data rise more
steeply at the lowest frequency than the two models.
The qualitative agreement between data and models
implies that the higher contrast requirement for
recognizing blurry letters is due at least in part to
greater perceptual similarity among the letters.

In conclusion, our findings show that the human
visual system requires higher contrast for letter
recognition when spatial resolution is severely limited.
Good agreement between the CSF-noise-ideal-observer
model and human observers shows that the greater
contrast requirement for recognizing low-pass letters is
due to a reduction in the information content of the
letters rather than a change in human visual processing.
It is likely that increasing blur results in higher

perceptual similarity of letters, requiring higher con-
trast for reliable letter recognition.
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Figure 10. (a) Relationship between the correlation index and ratio of recognition to detection thresholds for the CSF-noise-ideal-observer

model (red circles) and human observers (black circles) from the current study. Each circle represents a data point from each spatial-

frequency cutoff used for different stimulus conditions (i.e., lowercase and uppercase letters; foveal and peripheral viewing conditions).

The fitted lines indicate the regressions of the ratio of recognition to detection thresholds on the correlation index. The percentage of

variance accounted for by the correlation index was r2 ¼ 0.69, p , 0.001, for the model (red circles), and r2 ¼ 0.77, p , 0.001, for our

human subjects (black circles). Pelli et al. (2006) have performed a similar correlation analysis on several sets of unfiltered letters (such as

bold Bookman, Bookman, Kunstler, and also five-letter words) and measured the detection and recognition threshold contrast for these

stimulus sets. Panel (a) also includes the data (red triangles for the ideal-observer model; black triangles for human observers) from their

study. Although they did not explicitly report the effect of correlation on the ratio of contrast thresholds for recognition and detection, we

computed these ratios from human thresholds and ideal thresholds from their table 2 and have plotted them as a function of the correlation

index in this panel. Despite some methodological differences (e.g., their correlation index [‘‘overlap’’] was somewhat different from ours),

it is evident that their data lie near the 95% confidence interval of the regression lines for our data, confirming that increased correlation is

associated with a higher recognition/detection threshold ratio. (b) Comparisons of RMS contrast thresholds for recognition from our

human observers and from two models: our CSF-noise-ideal-observer model and Loomis’s (1990) model. RMS recognition thresholds are

plotted as a function of cutoff frequency for foveal lowercase letters. Black squares: human observers; red circles: CSF-noise-ideal-

observer model from the current study; blue triangles: Loomis’s (1990) model. (For details on the implementation of the Loomis model,

please see Footnote 5.)
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Footnotes

1 In signal processing, the Nyquist rate is the
maximum sampling rate that can be transmitted
through a channel, which is equal to two times the
highest frequency contained in the signal.

2 Note that as shown in Figure 4, there was a slight
mismatch in the number of treatment levels (cutoff
frequencies) for fovea and periphery. To keep a balance
(in terms of the number of treatment levels) between
conditions, the lowest cutoff of each foveal condition
(0.9 CPL from the uppercase condition; 1.1 CPL from
the lowercase condition) was excluded from the
ANOVA analysis. The exclusion is not believed to
change the pattern of results to be reported below.

3 Without causing any computational discrepancy,
the CSF filter can be viewed as frequency-dependent
noise. White noise is added after the CSF filter so that
the signal-to-noise ratio across spatial frequencies
followed the shape of the CSF. The performance of
the ideal observer is determined by signal-to-noise ratio
(SNR). The SNR can be modified by increasing noise
spectral density or by decreasing signal level. As far as
SNR is concerned, incorporating the human CSF into
the ideal observer model is essentially equivalent to
modifying the SNR in a frequency-dependent way by
introducing frequency-dependent noise (see Chung &
Tjan, 2009; Pelli, 1990, pp. 3–24), that is, additive noise
whose shape follows the inverse of the CSF. We can
formulate the outcome of the ideal and CSF-noise-ideal
observers in terms of object signal and noise as follows:
The CSF-noise-ideal observer ¼ f(S þ N(freq) þ N0),
(5) where S is a target signal, N0 is constant noise, and
N(freq) is a frequency-dependent noise that mimics the
effect on SNR of the CSF filter.

4 Stimulus uncertainty grows larger with an increas-
ing number of independent signals and is associated
with a rise in detection threshold (Pelli, 1985). The low-
pass filtering of 26 letters reduces the independence of
the 26 letters by increasing image overlap. In the
extreme (e.g., 0.9 CPL), the 26 letters all become a
similar looking blob, and uncertainty is reduced.

5 We implemented Loomis’s model using our lower-
case letter stimuli and human CSF filter. For the
nonlinear transducer, we applied the square-root
transformation (i.e., a power function with an exponent
of 0.5) to the stimuli. In this model, the perceptual
similarity was reciprocally related to the Euclidean
distance (D) between stimulus i and template j. Thus,
the similarity was expressed as S(i,j) ¼ exp[�c*D(i,j)].
We set the parameter value of c in the model to equate
human and ‘‘ideal’’ RMS contrast threshold for
lowercase foveal letters. For each blur level, we
obtained the RMS contrast threshold that corresponds
to 0.79 proportion correct for the model.
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Appendix A

Decision rules of the csf-noise-ideal-observer
for letter recognition and detection tasks

The ideal observer has to solve the inverse optics
problem, which is to figure out the probability of
having a target letter (Ti) out of 26 possible letters (T)
for a given input retinal image R, arrays of luminance
pixel values.

The detection task refers to which interval contains
any one of the 26 letters, whereas the recognition task
refers to identification of 1 of 26 letters. We can
formulate the detection task as letter recognition with
two possible alternatives: letter absent versus letter
present (for convenience, hereafter we refer to these two
alternatives as two detection intervals).

For the detection task, in order for an observer to
determine which interval contains any one of the 26
letter signals, the observer needs to consider all 26
possible letter signals for a given detection interval.
Thus, we can denote an interval with the n-number of
discrete letter signals by Tij that is, the jth letter signal
of the ith interval. Because two letter signals cannot
appear at the same time (i.e., mutually exclusive), the
inverse optics problem can be expressed as follows:

PðTijRÞ ¼ P ¨
n

j
TijjR

� �
¼
Xn
j¼1

PðTijjRÞ ðA1Þ

Because an ideal observer knows all 26 letters and their
prior probabilities, the term P(TijR) can be solved using
Bayes’s rule as follows:

PðTijjRÞ ¼
PðRjTijÞPðTijÞ

PðRÞ ’PðRjTijÞPðTijÞ ðA2Þ

After removing the denominator P(R), a normalizing
constant, P(TijR), can be reduced to the product of the

likelihood function P(RjTi) and the prior probability
P(Ti) of a target signal.

Because the prior probabilities of the 26 letters in our
experiment are equal, P(Ti) ¼ 1/26, the problem of
finding the maximum posterior probability can be
expressed as a maximum likelihood function:

PðTijjRÞ’ max
1, i, 26

PðRjTijÞ ðA3Þ

Therefore, the ideal observer’s goal is to find the
maximum likelihood function of a given noisy input
image R for each of the possible 26 letters Ti and
choose the highest possible Ti as its recognition
response for a given trial.

Because the luminance noise at different pixels is a
random sample from the same Gaussian distribution,
the probability of the entire input image R is the
product of the probabilities of all the pixels. Thus,
P(RjTij) is equivalent to the product of the m-number
of Gaussian distributions as follows:

PðRjTijÞ ¼
1

ðr
ffiffiffiffiffiffi
2p
p
Þm

exp � 1

2r2

				
				R� Tij

				
				
2

 !

¼ exp � 2

2r2

				
				R� Tij

				
				
2

 !

ðA4Þ
The likelihood function P(RjTij) in Equation A4 is
reduced to the exponential function after removing
terms that do not depend on i or j. Therefore, P(TijR)
in Equation A1 can be re-expressed as follows:

PðTijRÞ ¼
Xn
j¼1

exp � 1

2r2

				
				R� Tij

				
				
2

 !
ðA5Þ

When there is only one interval (i.e., letter recognition
task), the summation sign for grouping the 26 letter
signals of an interval can be dropped from Equation
A5. Because the exponential function is monotonic,
maximizing Equation A5 is the same as minimizing the
Euclidean distance jjR� Tijjj2 between the input image
R and a template Tij. In other words, the ultimate job
of the ideal observer, which is to find the maximum
posterior probability, is equivalent to finding the
smallest Euclidean distance between the noiseless
template Tij and noisy input image R.
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