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PURPOSE. The contrast sensitivity function (CSF) provides a detailed description of an
individual’s spatial-pattern detection capability. We tested the hypothesis that the CSFs of
people with low vision differ from a ‘‘normal’’ CSF only in their horizontal and vertical
positions along the spatial frequency (SF) and contrast sensitivity (CS) axes.

METHODS. Contrast sensitivity for detecting horizontal sinewave gratings was measured with a
two temporal-interval forced-choice staircase procedure, for a range of SFs spanning 5 to 6
octaves, for 20 low-vision observers and five adults with normal vision. An asymmetric
parabolic function was used to fit the aggregate data of the normal-vision observers, yielding
the ‘‘normal template.’’ Each of the 20 low-vision CSFs was fit in two ways, by using a shape-
invariant version of the normal template (with the width parameters fixed) that was shifted
along the log-SF and log-CS axes, and by an unconstrained asymmetric parabolic function
(‘‘free-fit’’).

RESULTS. The two fitting methods yielded values of the peak CS, the SF corresponding to peak
CS, and the high cut-off SF that were highly correlated and in good agreement with each
other. In addition, the width parameters of the low-vision CSFs were comparable with those
of the normal template, implying that low-vision CSFs are similar in shape to the normal CSF.

CONCLUSIONS. The excellent agreement of parameters estimated by the two fitting methods
suggests that low-vision CSFs can be approximated by a normal CSF shifted along the log-SF
and log-CS axes to account for the impaired acuity and contrast sensitivity.
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Our ability to detect the presence of an object depends on
the size of the object (larger is generally easier to detect),

and also on the presence of any differences, such as a
luminance difference, between the object and its background.
The sensitivity to the relative difference in luminance of an
object from its background is referred to as contrast sensitivity.
Contrast sensitivity depends on object size. A complete
representation of how contrast sensitivity depends on object
size is referred to as the contrast sensitivity function (CSF),
where the object size is usually specified in spatial frequency
(c/deg) of a sinewave pattern. As such, the CSF provides a rich
description of an individual’s spatial-pattern detection capabil-
ity. Knowing the CSF of a person with low vision is often
informative about their ability to see shapes and recognize
objects in their daily lives.

The gold standard for determining a CSF is to measure
contrast thresholds for detecting sinusoidal gratings across a
range of spatial frequencies using robust psychophysical
techniques.1,2 However, this method is time consuming,
technically demanding, and requires a carefully calibrated
display, and thus is not amenable for the determination of
CSF for clinical patients. Recently, a method that uses a
Bayesian adaptive procedure to select the spatial frequency and
contrast of each trial to maximize the expected information
gain has been developed for measuring CSFs.3,4 The efficiency
of this quick CSF method relies on its assumptions about the
shape of the CSF and requires 100 trials to achieve good

agreement with a CSF measured with the conventional
method.4 The determination of CSF could be made more
efficient if we could reduce the number of measurements
required to estimate the full CSF, and link those measurements
to standard clinical measures. In fact, an important simplifica-
tion would exist if low-vision CSFs are similar in shape to
normal CSFs, differing only in their positions on the spatial
frequency (SF) and contrast sensitivity (CS) axes. In this paper,
we test this hypothesis.

There are several ways in which low-vision CSFs could differ
in shape from normal-vision CSFs. For example, if contrast
sensitivity loss occurs primarily at high spatial frequencies, then
the fall-off of contrast sensitivity with high spatial frequencies
would be steeper than observed in a normal-vision CSF (Fig.
1A). In the case that contrast sensitivity is equally affected
across all spatial frequencies, the resulting CSF would appear as
a vertical shift of a normal-vision CSF (Fig. 1B). Alternatively, if
the reduction is not uniform across frequencies, then the
resulting CSF may look like the one shown in Figure 1C. In
addition, notches, representing CS loss only at SFs between the
peak SF and the high SF cutoff (Fig. 1D), have been reported for
patients with neurologic diseases such as multiple sclerosis.5

Notches can also be due to uncorrected refractive errors6 or
imprecision of measurements7; but because they are not the
etiologies of low vision, they will not be considered for the
purpose of this paper. Despite the fact that some low-vision
CSFs may differ in shape from normal-vision CSFs, a previous
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study (published only in an abstract form) demonstrated that
low-vision CSFs were reasonably modeled using a template
derived from normally sighted individuals.8 In this study, we
present empirical evidence showing that indeed, low-vision
CSFs can be well described by a normal-vision template
appropriately shifted on the SF and CS axes. We focused on
measuring CSFs for low-vision observers with visual impair-
ment due to prevalent ocular diseases commonly seen in low-
vision clinics.

METHODS

Contrast thresholds for detecting the presence of a sinewave
grating with horizontal bars were determined using a two
temporal-interval forced-choice paradigm combined with a
two-down one-up staircase procedure that tracked perfor-
mance at 71% accuracy.9 Only one spatial frequency was tested
in each staircase. The order of frequencies tested was
randomized within a session. Grating stimuli were generated
using a VSG2/5 video card (Cambridge Research Systems,
Rochester, UK) and presented on a SONY 24 00 graphics display
(model# GDM-FW900; Park Ridge, NJ, USA) at a mean
luminance of 75 cd/m2. On each trial, a full-field grating with
at least five cycles visible, was presented in one of the two
temporal intervals that lasted 1 second each with abrupt onset
and offset, with a 0.5 second separation between the two
intervals. The two temporal intervals were denoted with a
high- and low-pitch tone, respectively. Observers indicated the
temporal interval in which the grating was presented, guessing

if necessary. Feedback on response correctness was not
provided. The contrast of the grating decreased by one step
following two consecutive trials with correct responses, and
increased by one step following a single incorrect response.
The step sizes were 0.2 log units for trials before the first two
reversals of the staircase and 0.1 log units for subsequent trials.
Each staircase terminated after 10 reversals and only the
thresholds at the last eight reversals were used for calculating
the mean contrast threshold. Each spatial frequency was tested
twice, in two different sessions.

Between six and eight spatial frequencies were tested for
each low-vision eye. The exact range of spatial frequencies was
chosen for each eye such that there were at least two spatial
frequencies left of the peak of the CSF and two on the right.
For these eyes, the contrast threshold reported for each spatial
frequency represents the geometric mean of a total of 16
reversals from two staircases.

To construct the normal template, we tested five normally-
sighted observers using the same experimental paradigm with
the following changes. First, contrast thresholds were
measured for 10 spatial frequencies ranging from 0.4 to 25
c/deg, in steps of 0.2 log units. Second, four staircases were
tested for each spatial frequency and each observer, instead of
two for low-vision eyes. Thus, at each spatial frequency, the
contrast threshold of the normal data represents the
geometric mean of 160 staircase reversals (8 reversals per
staircase 3 4 staircases per observer 3 5 observers). These
changes were made to ensure precise measurement of the
normal template.

Observers

Twenty observers with low vision (12 males and 8 females,
mean age ¼ 70.6 6 11.12 years) and five observers with
normal vision (2 males and 3 females, mean age¼ 25.8 6 9.9
years) participated in this study. The five observers with
normal vision all had best-corrected visual acuity (BCVA) of at
least 20/20 in each eye, normal binocular vision and ocular
motility function, and no history of any eye diseases. All
observers in the low vision group had bilateral vision loss,
with a BCVA of 0.14 logMAR (20/25�2 Snellen equivalent) or
worse in the better eye, with a confirmed diagnosis of an eye
disease that led to reduced acuity. The diagnoses included
AMD, Stargardt disease, glaucoma and optic neuropathy; all
of which have been reported to lead to acuity and contrast
deficits, and are common etiologies of patients attending low-
vision clinics. These observers had a complete low vision
evaluation within the 3 months prior to their participation in
the study. The Table lists the visual characteristics of the low-
vision observers. All observers, normal or low vision, gave
informed oral and written consent before the commence-
ment of data collection. The research followed the tenets of
the Declaration of Helsinki and was approved by the
institutional review board at the first author’s institution.
All observers were tested monocularly, with the nontested
eye covered using a standard black-cloth eye-patch. Low-
vision observers were tested using the eye with the better
acuity. Normal-vision observers were tested using their left
eyes.

We chose to use young adults, instead of age-matched older
adults, for constructing the normal-vision template mainly for
two reasons. Most importantly, our hypothesis of a shift of the
normal template to account for acuity and contrast deficits is
not age-specific. Second, because of our need to construct a
high-quality normal template, it was more practical to test
young, normally-sighted adults on the more rigorous and time-
consuming CSF data collection.

FIGURE 1. Schematic figure depicting four possibilities for the shape of
a low-vision CSF (plotted in red). The black curve in each panel
represents the normal-vision CSF. (A) A low-vision CSF that exhibits
contrast sensitivity loss only at high spatial frequencies. (B) Uniform CS
reduction across all spatial frequencies, resulting in a vertical shift of
the normal CSF. (C) An example of a CSF when the CS reduction is not
uniform across all spatial frequencies. (D) Contrast sensitivity loss only
in the midfrequency range, resulting in a ‘‘notch.’’ This kind of CSF has
been reported for patients with neurologic disorders.
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Curve-Fitting and Statistical Analyses

Although many functions have been used to describe normal
CSFs (see Watson and Ahumada10 for a comparison of the
different functions), we adopted an asymmetric parabolic
function, which is simple to construct, and provides an
excellent fit to our normal-vision data. The function, which
requires four parameters, is given by the following equation:

f ðSFÞ ¼ CSp � ðSF � SFpÞ2 3 ðwidthLÞ2 if SF < SFp

CSp � ðSF � SFpÞ2 3 ðwidthRÞ2 if SF ‡ SFp

;

�

ð1Þ

where f(SF) is the contrast sensitivity at a spatial frequency SF,
CSp is the peak contrast sensitivity, SFp is the spatial frequency
at which CSp occurs, and widthL and widthR are the curvatures
of the left and right branches of the asymmetric parabolic
function, respectively. The values for contrast sensitivity and
spatial frequency were log-transformed before curve-fitting.
Curve-fitting was performed using Igor Pro (WaveMetrics, Inc.,
Lake Oswego, OR, USA), which uses a Levenberg-Marquardt
iterative algorithm (a form of nonlinear least-squares fitting) to
minimize the v2 error between the experimental and the
model fit.

To evaluate whether the shapes of the low-vision CSFs were
the same as that of the normal-vision CSF, we first constructed a
‘‘normal template’’ by determining the four parameter values
yielding the best-fit function to the normal-vision data using
Equation 1. Then we compared two fitting methods, free-fit

versus template-fit, for each low-vision CSF. Free-fit was
accomplished by fitting a low-vision CSF using Equation 1
and allowing all four parameters to vary. Template-fit also made
use of Equation 1 but with the two parameters, widthL and
widthR, constrained to the values returned for the best-fit
function for the normal-vision data. The template fit allowed
only variation in the peak contrast sensitivity CSp and the
spatial-frequency at the peak SFp. The effect of this restriction
is to retain the shape of the CSF while permitting only
translation of the function horizontally and vertically along the
log spatial frequency and log contrast sensitivity axes. Model
comparisons of the four- and two-parameter fits for the low-
vision CSFs were performed using the Akaike Information

Criterion11 (AIC), which takes into account the goodness-of-fit
of each fitting method, given the number of free parameters
used. According to Akaike, the model with the smaller overall
AIC value is the model of choice.11

Besides comparing the goodness-of-fit, we also compared
several key parameters of the fitted functions derived from the
two fitting methods, to determine how well these parameters
correlate or agree with each other. The degree of agreement
was examined using the Bland-Altman analysis.12 If the shape
of low-vision CSFs is the same as that for the normal-vision CSF,
then the normal template should fit the low-vision data just as
well as the free-fit. The goodness-of-fit of the two fitting
methods would be similar, and that the key parameters derived
from the two methods would show a strong correlation and
agreement with each other. All statistical analyses reported in
this article were performed using the R software.13

RESULTS

We will first present the CSF data of the normal vision
observers, to be used in constructing the ‘‘normal template.’’
Then we will compare the fitting of the normal template and
the free-fit to the CSFs of the low vision observers. Key
parameters derived from the template fit and the free-fit will
also be compared.

Figure 2 shows the contrast sensitivity versus spatial
frequency data of our group of normal vision observers. Each
data point represents the contrast sensitivity, the reciprocal of
the geometric mean of contrast thresholds across the five
normal vision observers, with 32 staircase reversals for each
observer (eight reversals per staircase and four staircases per
observer). Error bars represent the SD of the mean sensitivity
based on 1000 bootstrap resamplings. To derive the ‘‘normal-
vision CSF,’’ we fit the data set using the asymmetric parabolic
function (Equation 1). The best-fit function returns the
following parameters: peak contrast sensitivity, CSp ¼ 2.22
log units (corresponds to 166); spatial frequency at which peak
contrast sensitivity occurs, SFp¼ 0.4 log c/deg (corresponds to
2.5 c/deg); widthL ¼ 0.68 and widthR ¼ 1.28. This normal-
vision CSF (solid line through the data points in Fig. 2), with
the width parameters constrained to the values of the best-fit
curve, forms our normal template.

TABLE. Visual Characteristics of the 20 Eyes With Low Vision

ID M/F Age, y Eye Chart Acuity, logMAR Diagnosis Central Field Intact?

A F 84 OD 0.46 AMD No

B F 76 OS 0.48 AMD No

C M 83 OD 0.44 AMD No

D M 84 OS 0.50 AMD No

E M 85 OS 0.70 AMD No

F M 84 OD 0.56 AMD No

G M 66 OD 0.82 AMD No

H F 78 OS 0.74 AMD No

I F 74 OD 0.54 AMD No

J F 65 OS 0.52 AMD No

K M 56 OD 1.02 Stargardt disease No

L M 58 OS 1.04 Stargardt disease No

M F 62 OD 0.54 Stargardt disease No

N F 60 OD 0.58 Stargardt disease No

O M 57 OS 1.10 Stargardt disease No

P M 51 OD 0.86 Toxoplasmic chorioretinitis No

Q F 74 OD 0.14 Glaucoma Yes

R M 66 OD 0.48 Optic neuropathy Yes

S M 67 OS 0.74 Glaucoma Yes

T M 82 OD 0.78 Oculocutaneous albinism Yes
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Data of the low-vision observers are shown in Figure 3.
These data are color-coded: red for those with central field loss
and blue for those with intact central field. We categorized the
low-vision observers in this way because the presence or
absence of central field loss is often associated with substantial
differences in reading and other real-world activities. Each low-
vision observer’s CSF data were fit separately using the two
fitting methods, the best-fit curve using the free-fit method is
given in each panel in the same color as the symbols and the
best-fit curve using the template-fit is given as the gray solid
line.

We first evaluated which of the two fitting methods
provided a better description of individual low-vision CSFs.
To do so, we compared the sum of the AIC of the two fitting
methods across all low-vision eyes, with AIC given by

AIC ¼ v2 þ 2k; ð2Þ

where k is the number of free parameters (4 for free-fit and 2
for template-fit). The method with the smaller sum of AIC is
the better model.11 Using this method, the sum of AIC is 231.2
for the free-fit method and 231.1 for the template-fit, implying
that the two fitting methods provide equally good fits to the
low-vision data.

We examined the correlation and agreement of three key
parameters derived from the two fitting methods, the peak
contrast sensitivity (CSp), the spatial frequency at peak contrast
sensitivity (SFp), and the high cutoff spatial frequency. CSp and
SFp are parameters returned by the two fitting methods, while
the high cutoff spatial frequency was derived from Equation 1,
by setting f(SF ) to a value of 1 and solving for the
corresponding spatial frequency. The top panels in Figure 4
show how well each of these parameters derived from the two
fitting methods correlate with each other. A t-test on the
correlation coefficients (r ranging from 0.88–0.99) shows that
all of these correlations are statistically significant (P <
0.0001), indicating that the parameters from the two fitting
methods correlate strongly with each other. Because high
correlation does not necessarily mean good numerical agree-
ment, we also examined the data in Bland-Altman plots12

(bottom panels in Fig. 4) to determine how well each of these
parameters derived from the two fitting methods agree with

each other. We reason that if the 695% limits of agreement
(plotted as dashed lines in each of the bottom panels) are
comparable with the test–retest reliability of similar measure-
ments, then the two fitting methods are in good agreement
with each other. The 95% limits of agreement for CSp are
60.06 log units, which are smaller than the published data on
test-retest reliability of contrast sensitivity measurement using
the Pelli-Robson Chart14 or the MARS Chart,15 with values
ranging from 60.15 to 60.33 log units.16–18 For SFp, the 95%
limits of agreement are 60.17 log units, but because we know
of no published data on the test-retest reliability of SFp, or of
similar measurement, we cannot compare our measurements
with previous data. The 95% limits of agreement for the high
cutoff spatial frequency are 60.05 log units, smaller than the
test-retest reliability of visual acuity measurement (equivalent
to the high cutoff spatial frequency), which ranges between
60.1 and 60.2 log units.19,20 Thus, in general, the parameters
derived from the two fitting methods are in good agreement.

Note that the main results do not change if we consider
only data for eyes with central field loss. The correlation
coefficients for the values estimated for the two fitting
methods remain unchanged (0.99 for CSp, 0.88 for SFp, and
0.99 for the high cutoff spatial frequency), and remain
statistically significant (P < 0.0001). In addition, Bland-Altman
plots show that the values derived from the two fitting
methods still agree well with each other. These additional
analyses ensure that our conclusion that the free-fit method
provides a good fit to the low-vision CSF data is still valid if we
consider only patients with central field loss.

Given our hypothesis of low-vision CSFs having the same
shape as the normal CSF, it is important to compare the
parameters that govern the shape of the fitted functions. These
are the widthL and widthR parameters. In Figure 5, we
represent the distributions of the widthL and widthR param-
eters for the low-vision CSFs, derived from the free-fit method
in box-and-whisker plots. The gray dashed lines show the
values of these parameters for the normal template. A test for
normality based on the Shapiro-Wilk test showed that the
distribution for widthL does not follow a normal distribution
(W ¼ 0.89, P ¼ 0.03) but the distribution for widthR is not
different from a normal distribution (W ¼ 0.94, P ¼ 0.28).
Therefore, we used the Mann-Whitney U test to evaluate
whether these distributions, derived from the free-fit method,
are different from the parameter values for the normal CSF.
While values for the parameter widthR do not differ between
the free-fit method and the constrained value (U ¼ 200, P ¼
1.0), values for widthL are different between the free-fit
method and the constrained value (U ¼ 100, P ¼ 0.004).
Indeed, Figure 3 shows that for several data-sets, the free-fit
method yields a fitted curve with a shallower low-frequency
decline than that returned by the template fit, especially for
eyes C, D, F, G, and I. However, the means of the two
distributions, represented by the red circles, are very close to
the constrained values.

Results from these analyses show that the free-fit method
provides a description of the low-vision CSF data that is very
similar to the template-fit, which is derived from the normal-
vision data. We acknowledge that some of the low-vision CSFs
are more low-pass in shape, resulting in the sample distribution
of the parameter widthL being different from that of the
constrained value, however, the mean of the sample distribu-
tion (0.64) is very similar to that of the constrained value
(0.68).

Considering that the template fit only has two free
parameters, our results suggest that low-vision CSFs can be
related to a normal CSF with two additional measurements. A
practical question is whether letter-chart acuity, a clinical
measurement performed on every clinical patient, can be one

FIGURE 2. Contrast sensitivity is plotted as a function of spatial
frequency (c/deg) for the five normal-vision control observers. Each
data point represents the sensitivity (reciprocal of contrast threshold)
based on eight reversals per staircase, four staircases per observer, and
five observers. Error bars represent the SD of the mean sensitivity
based on 1000 bootstrap resamplings.
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FIGURE 3. Contrast sensitivity is plotted as a function of spatial frequency (c/deg) for the 20 eyes with low vision. Data are color-coded: red for
observers with central field loss and blue for observers with intact central field. Each data point represents the sensitivity (reciprocal of contrast
threshold) based on 16 reversals (8 reversals per staircase for 2 staircases). Error bars represent the SD of the mean sensitivity based on 1000
bootstrap resamplings. The best-fit curves according to the free-fit and template-fit are given as the color (red or blue) and gray solid curves,
respectively. The normal-vision CSF is also given in each panel as the gray dashed curve.

Comparing CSF for Normal and Low Vision IOVS j January 2016 j Vol. 57 j No. 1 j 202

Downloaded from iovs.arvojournals.org on 08/24/2020



of the two additional measurements. Here, we seek to
determine if letter-chart acuity can predict some of the key
parameters of the fitted CSF functions. To do so, we examined
if there exists a significant correlation between letter-chart
acuity, measured using a Bailey-Lovie Chart21 with acuity
expressed in logMAR, and each of the three key parameters:
CSp, SFp, and the high cutoff spatial frequency, as derived from
the free-fit method. As shown in Figure 6, the correlation
between CSp and acuity is weak (r¼�0.07; P¼0.78), but there
is a high correlation between SFp and acuity (r ¼�0.76; P <
0.0001), and between the high cutoff spatial frequency and
acuity (r ¼ �0.79; P < 0.0001). In other words, letter-chart
acuity can explain 58% and 62% of the variances in SFp and the
high cutoff spatial frequency.

Once again, when we consider only data for eyes with
central field loss, the results remain practically the same. The
correlation between CSp and acuity remains weak and
insignificant (r¼ 0.05; P¼ 0.84), while the correlations remain
high between SFp and acuity (r ¼ �0.76; P ¼ 0.0006), and
between the high cutoff spatial frequency and acuity (r ¼
�0.75; P ¼ 0.0009).

The high cutoff spatial frequency of the CSF represents the
smallest detail that can be resolved, thus theoretically it should
agree well with letter-chart acuity. The Bland-Altman plot in
Figure 7 shows how well the high cutoff spatial frequency

FIGURE 4. Values derived from the free-fit and template-fit methods are compared for the peak contrast sensitivity (CSp), the spatial frequency that
yields the peak contrast sensitivity (SFp) and the high cutoff spatial frequency. In the top panels, we examine how well these values from the two
fitting methods correlate with each other. Data are color-coded, and the black line in each panel represents the best-fit regression line. The gray

dashed line in each panel represents the 1:1 line. In the bottom panels, we examine, in the form of Bland-Altman plots, how well the values
between the two fitting methods agree with each other. The black solid and dashed lines in each panel represent the mean of the difference of log
values between the two fitting methods and the 95% limits of agreement, respectively.

FIGURE 5. Box-and-whisker plots comparing the values of widthL and
widthR derived from the free-fit method with the constrained values
based on the normal CSF. The upper and lower bound of each box

represent the 75th and 25th percentiles of the distribution, and the
median is represented by the thick line within the box. The top and
bottom ends of the whisker represent the 95th and 5th percentiles of
the distribution, respectively. Red circles represent the means of the
two distributions. Note that the mean values are very similar to the
parameter values for the normal template, shown as gray dashed lines.
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derived from the free-fit method agrees with the letter-chart
acuity. The high cutoff spatial frequencies were converted to
their equivalent logMAR acuities by assuming that individual
bars of the sinewave grating are the spatial details to be
resolved. As an example, the critical feature of a 20/20 letter
(logMAR 0.0) subtends 1 arc min, and each light and dark bar
of a 30 c/deg grating subtends 1 arc min. Therefore, a cutoff
spatial frequency of 30 c/deg is often taken to correspond to a
letter acuity of 20/20. This method essentially assumes that the
letter frequency for identification is 2.5 c/letter, although the
critical frequency for letter identification may vary depending
on conditions such as letter size, retinal eccentricity, and so
on.22,23 The 695% limits of agreement are 60.28 log units,
larger than the test-retest reliability of visual acuity measure-
ment of 60.1 to 0.2 log units.19,20 In addition, the mean acuity
difference between the high cutoff spatial frequency and chart
acuity is 0.15 logMAR, which is statistically different from a null
difference (P ¼ 0.0002). These results show that in general,
using the conversion that 20/20 letters correspond to 30 c/deg,
the letter-chart yields a poorer acuity than the high cutoff
spatial frequency. Therefore, attempts to derive the full CSF
using the letter-chart acuity as one of the two measurements
need to take into account this constant difference.

DISCUSSION

Contrast sensitivities and visual acuities are affected in many
ocular diseases that lead to impaired vision, thus leading to
many reports that the CSFs of individuals with diseases such
as macular disorders,24–27 glaucoma,28,29 and optic neuropa-
thy30 are different from that of a ‘‘normal’’ CSF. To our
knowledge, Pelli et al.8 was the first investigation to test the
hypothesis that low-vision CSFs have the same shape as that
of a normal-vision CSF. They measured the CSFs of 32 low-
vision observers and fit each set of log CS versus log SF data
using a single parabola that was derived from four normally
sighted observers. By constraining the shape of the parabolic
template but allowing it to shift vertically and horizontally
along the log CS and log SF axes, Pelli et al.8 found that the
parabolic template provided a good fit to all the low-vision
CSFs. Subsequently, Rohaly and Owsley31 applied the method
of Pelli et al.8 and fit a parabolic function to the data of 100
older adults aged between 53 and 85 years, with an average
acuity of 20/25; and found that the parabolic template did not
provide a good fit for 20% of their observers. These authors
also attempted to fit their data using an exponential
function32 but again found that the function did not provide
a good fit to their data. This led the authors to conclude that
the CSFs of older adults could not be described by a single
parabolic or exponential function with two or three free
parameters. Differences in the observer characteristics (low
vision versus older adults with relatively good vision) aside,
there are several key methodologic differences between our
study and that of Rohaly and Owsley.31 Rohaly and Owsley31

had their observers adjust the contrast of a grating stimulus
until they just detected the grating (method of adjustment).
We used a two temporal interval forced-choice paradigm
combined with a staircase procedure. It is well known that a
criterion-free forced-choice method usually provides more
reliable measurements of contrast threshold than the method
of adjustment.33,34 This might account for why the shapes of
the CSFs for some of their observers were unusual, as shown
in their paper. Most noticeably, in several figures in their
paper, contrast sensitivities were practically invariant for a
large range of low- to high-spatial frequencies, and the
contrast sensitivity at the highest-spatial frequency (22.5 c/
deg) was still much higher than expected (based on published
data). This unusual trend of contrast sensitivity data, and the
lack of a clear fall-off of sensitivity at high-spatial frequencies
make it difficult for any function with a high-frequency roll-off
to provide a good fit. It was indeed because of this reason that

FIGURE 6. The correlation between CSp (left), SFp (middle), and the high cutoff SF (right) with letter-chart acuity.

FIGURE 7. Letter-chart acuity and the high cutoff spatial frequency
derived from the free-fit method (converted to logMAR acuity) are
compared in a Bland-Altman plot. The mean difference between the
two methods is 0.15 logMAR (black solid line) and is statistically
different from 0 (gray dotted line).
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we tested a range of spatial frequencies that included at least
two frequencies lower than, and at least two frequencies
higher than the peak of the CSF.

More recently, Watson and Ahumada10 compared 11
functions to describe a large set of CSF data obtained from
normally sighted observers using a variety of stimuli (the
ModelFest data), and found that many of the functions fit the
data similarly well. Most of these functions contain four free
parameters. These authors cautioned the use of a template
that is based on a set of average data in fitting an individual
observer’s data. Nevertheless, in our study, we found that a
template based on the average data of a group of normally-
sighted observers provides a reasonably good fit to individual
data of 20 low-vision eyes. The close coupling between the
low- and normal-vision CSFs does not even require the
normal-vision template to be derived from age-matched
control observers. Presumably, shifting the normal template
to fit the low-vision data accounts for the visual deficits of the
individual, regardless of whether the deficits are due to ocular
diseases or normal aging. Had we found that the shifted
normal template did not provide a good fit to the low-vision
data, the age difference between our young normal and low-
vision groups would have been a possible factor accounting
for the difference, and that the use of a normal template
derived from normally sighted observers age-matched with
those of the low-vision group would have been necessary.

It is well known that the rates of fall-off of contrast
sensitivity with spatial frequency differ for the left and
right branches of the CSF with respect to CSp, thus in this
study, we chose an asymmetric parabolic function to fit our
data because it allows for different rates of fall-off (or the
width parameters in Equation 1) for the left and right
branches of the CSF. An asymmetric parabolic function has
four free parameters. By constraining two of these
parameters that determine the shape (width) of the
function, our template only contains two free parameters.
Recently, Pelli and Bex35 suggested that a template with
four free parameters, as in the many models evaluated by
Watson and Ahumada,10 might provide a better fit to
individual data. Here, we showed that a model with only
two free parameters might be sufficient, and in fact, the
template fit with only two free parameters yielded an
overall AIC value that is virtually identical to that of the
free-fit with four free parameters.

A practical advantage of modeling CSFs with a template
that requires only two free parameters is that we only need
two measurements in addition to the template to derive a full
CSF, thus offering an efficient method for the determination of
the CSF. If our concern is to obtain an estimate of the CSF of a
patient with low vision, then one of these two measurements
could be the conventional acuity measurement, since acuity is
measured for every patient in the clinic, and that letter chart
acuity correlates strongly with both the spatial frequency at
the peak of the CSF and the high cutoff spatial frequency (Fig.
6). As for the second measurement, there are many clinical
tests of contrast sensitivity, such as the Bailey-Lovie Low
Contrast Acuity Chart36 or Regan Charts,37 which measure
acuity for letters at a fixed low contrast; the Pelli-Robson
Chart14 or the MARS Chart,15 which provide a contrast
sensitivity measurement close to the peak of the CSF; and
other contrast sensitivity tests such as the Melbourne Edge
Test,38 and the Berkeley Discs Contrast Sensitivity test (Bailey
IL, et al. IOVS 2011;52:E-Abstract 1892). The differences in
acuity and a clinical contrast sensitivity measurement
between a low-vision individual and the norms could then
be used to shift a normal CSF horizontally along the log SF
axis and vertically along the log CS axis. As an example,
assume a low-vision individual had an acuity of 0.4 logMAR

and a contrast sensitivity as measured using the Pelli-Robson
Chart of 1.35 log units. Now, let us further assume that the
normal values for acuity and contrast sensitivity measure-
ments using the same charts are �0.1 logMAR and 2.1 log
units; then the differences in acuity and contrast sensitivity
between the low-vision individual and normals become 0.5
and 0.75 log units, respectively. In this case, the CSF of the
low-vision individual can be approximated by shifting a
normal CSF template leftward along the log SF axis by 0.5 log
units to account for the difference in acuity, and downward
along the log CS axis by 0.75 log units to account for the
difference in contrast sensitivity. Whether or not our
conjecture of using just two clinical measurements, visual
acuity and contrast sensitivity, can yield a full CSF closely
resembles that measured using the ‘‘gold standard’’ (using
grating stimuli) would need to be empirically validated in
future studies.

Two caveats should be kept in mind when interpreting our
results. First, the specific shape of a CSF is stimulus-
dependent and may change with stimulus parameters such
as luminance,39 retinal eccentricity,40 field size,41,42 dura-
tion,43 and the temporal characteristics of the gratings.44,45

For example, the shape of a CSF changes from band-pass to
low-pass with a reduction in the mean luminance of the
gratings from photopic to scotopic level, an increase in retinal
eccentricity, a briefer presentation of the grating stimulus or
when there is an increased temporal modulation. The close
coupling between the low- and normal-vision CSFs observed
in this study applies to the set of stimulus conditions used in
this study. Given that our set of stimulus parameters is fairly
generic, it is likely that the close coupling is quite general and
would apply to measurements made with other stimulus
parameters. Nevertheless, future investigations may wish to
establish their own normal template to ensure the best fitting
of their low-vision data, especially if these investigations are
going to use stimulus parameters drastically different from
those used in this study. Second, although our group of low-
vision observers includes etiologies of ocular disease com-
monly seen in low-vision clinics, it did not include patients
with cataracts or neurologic disorders such as multiple
sclerosis. Patients with cataracts whose disability is more
due to glare may show a selective reduction in contrast
sensitivity at low spatial frequencies. Multiple sclerosis,
although infrequently seen in low-vision clinics, has been
shown to produce notches in the CSF in the midfrequencies,5

which could make it difficult for any function to provide a
good description of the CSF. It remains to be verified whether
or not a normal template, ours or others, can be used to fit the
CSF of these conditions, or other conditions that lead to the
shape of the CSF being different from that of the normal
template.

An efficient method of determining a full CSF is useful for
individuals with normal vision, but it is especially useful for
low vision as the peak contrast sensitivity is a good predictor of
daily activities such as mobility,46 face recognition,47 and
reading.48 In the laboratory, full low-vision CSFs can be used as
filters to recreate visual stimuli that simulate what individuals
with low vision can detect. This may be a useful tool for
informal evaluation of the impact of vision impairment,
especially acuity loss and reduced contrast sensitivity, on
visibility of real-world objects and scenes. In the clinic, filtering
visual scenes using the CSF of a low-vision patient may help
family members understand what the patient can see or why
there are difficulties with certain tasks. It should be recog-
nized, however, that using the CSF as a linear filter has
significant limitations in simulating low-vision visibility. More
sophisticated models of feature visibility, such as that of Peli,49

may include multiple spatial-frequency channels and the ability
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to represent local luminance-dependent variations in contrast
sensitivity across the visual field.

In this study, we have learned that the contrast sensitivity
functions (CSFs) of many low-vision subjects have the same
shape as the CSFs of normally-sighted subjects, but differ from
the normal CSFs in two values, the spatial frequency and
contrast sensitivity at the peak of the curve. These two values
are closely associated with clinical measures of acuity and
contrast sensitivity. This means that by coupling our knowl-
edge of the characteristic CSF curves of normally-sighted
subjects with two readily available clinical measures from a
patient with low vision, we can infer a rich and informative
description of the patient’s pattern vision.
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