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Accurate reading of words and text relies on reliable identification of letters in left-to-right order. Previ-
ous studies have shown that people often make letter-reversal errors when identifying strings of letters
away from fixation. These errors contribute to a decline in letter identification performance away from
fixation. This study tests the hypothesis that these errors are due to decreased precision (increased posi-
tion noise) in the coding of letter position in the periphery. To test our hypothesis, we measured observ-
ers’ performance for identifying pairs of adjacent letters presented within eight letter positions left and
right of fixation. The task was to name the two letters of each pair, from left to right. Responses were
scored in two ways for each letter position: (1) letters were identified correctly and in the correct posi-
tion, and (2) letters were identified correctly but in the wrong position. The ratio of these two scores,
when subtracted from 1, gives the empirical rate of mislocation errors. Our primary finding shows that
the coding of letter position becomes increasingly imprecise with distance from fixation. A model in
which the encoded position of each letter is independent and Gaussian distributed, and in which the
spread of the distribution governs the precision of localizing the letter accounts for the empirical rate
of mislocation errors. We also found that precision of letter position coding scales with letter size but
the precision does not improve with the use of a pre-cue.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The accuracy of letter identification often suffers when letters
are presented in strings, even when each of the letters can be iden-
tified correctly when presented alone. This effect is more pro-
nounced when letters are presented outside the foveal region
(Bouma, 1970). The difficulty in correctly identifying letters in
the presence of other letters is referred to as crowding.

Crowding is ubiquitous in spatial vision and affects a variety of
spatial tasks (for a review, refer to Levi, 2008). With respect to let-
ter identification, the hallmark of the crowding effect is a reduction
in letter identification accuracy for letters flanked by other letters
when compared with the performance for identifying single let-
ters. The reduction in accuracy can be a result of (1) assigning a
wrong identity to the target letter (letter-identity errors); and/or
(2) assigning the correct identity to the target letter but the wrong
position relative to other letters (letter-reversal errors). The latter
type of error is often referred to as a ‘‘transposition error” (Estes,
Allmeyer, & Reder, 1976) or a ‘‘mislocation error” (Chung, Legge,
& Ortiz, 2003; Ortiz, 2002; Strasburger, 2005). There is evidence
that a significant proportion of the errors made when people iden-
tify strings of letters away from fixation is due to mislocation er-
rors, e.g. the string of letters ‘‘oae” might be mis-read as ‘‘aoe”
ll rights reserved.

g).
(Butler & Currie, 1986; Estes et al., 1976; Mewhort, Campbell,
Marchetti, & Campbell, 1981; Ortiz, 2002; Strasburger, 2005; Stras-
burger, Harvey, & Rentschler, 1991; Townsend, Taylor, & Brown,
1971). Given that accurate reading of words and text relies on cor-
rect identification of letters in the left-to-right order, errors in
either identification or spatial order of letters may disrupt both
word recognition and reading.

In this study, we hypothesized that the accuracy of judging the
spatial order (the relative positions) of letters is directly related to
the precision of position coding of letters. As such, the goals of this
study were to examine the precision of position coding of letters at
different distances away from fixation, and to determine whether
the imprecision of letter position coding could account for a por-
tion of the errors made in identifying letter strings.

Position judgments can be exquisite under optimal conditions.
For example, our ability to judge the relative position of a pair of
highly visible lines or dots that are in close proximity to one an-
other (Vernier judgment) can be as precise as a few arc sec (West-
heimer, 1975). This exquisite performance has often been
attributed to a spatial filter mechanism for mediating relative posi-
tion judgments. According to this model, the visual system com-
pares the contrast response output from spatially localized
oriented filters that straddle the crucial target features, thereby
deducing the relative position of the two targets (Klein & Levi,
1985; Wilson, 1986). However, the precision for judging the
relative position of two objects decreases dramatically when the
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two objects are separated by a few arc min (Klein & Levi, 1987; Levi
& Klein, 1989; Waugh & Levi, 1993; Williams, Enoch, & Essock,
1984). For instance, Williams et al. (1984) reported that thresholds
for judging the relative position of two dots (a Vernier task) sepa-
rated by 600 reaches approximately 6000, an order of magnitude
higher than the Vernier threshold for abutting dots. The declining
precision in position judgment for widely separated targets is often
attributed to the reliance on a less precise mechanism for localiza-
tion—the local sign mechanism.

Local signs are hypothetical sensory signals that represent stim-
ulus locations in the visual field. According to Lotze (1885) who
first proposed the notion of local sign, each retinal receptor stimu-
lated by a target will signal a local sign that can be thought of as a
location or position tag. Hering (1899) suggested that for an ex-
tended stimulus such as a thin line, positional accuracy of the line
can be improved by averaging the local signs along the length of
the line. Relative position judgment of a pair of separated Vernier
lines could be accomplished by comparing the mean local signs
of the two lines. For extended two-dimensional targets, local signs
are likely to be computed based on the centroid of each target, be-
cause relative position judgment can be equally precise for sepa-
rated targets that are composed of clusters of dots (Badcock,
Hess, & Dobbins, 1996; Hess, Dakin, & Badcock, 1994; Whitaker
& Walker, 1988), irregular shapes (Patel, Bedell, & Ukwade,
1999), or have opposite contrast polarity (Levi, Jiang, & Klein,
1990; Levi & Waugh, 1996; Levi & Westheimer, 1987; O’Shea and
Mitchell, 1990).

In this study, we were interested in the position coding of
letters. Because letter stimuli are two-dimensional, often have
irregular shapes, and adjacent letters in text usually have center-
to-center spacing greater than a few arc min (the mean spacing be-
tween 12 point Times Roman letters, viewed from 40 cm, is
approximately 17.40), we reason that positional information for let-
ters is likely to be based on local signs that are computed based on
centroids of the letters. The computation of the centroid of a target,
if based on features which themselves have some positional impre-
cision, should follow a normal distribution in which the spread of
the distribution represents the precision of localizing the target. A
distribution with a smaller spread implies that we could localize
the target with higher precision. A pair of adjacent letters would
therefore yield two distributions of the centroid signals, one for
each letter. If the spread of the distributions is small enough so that
there is little or no overlap, then we would be able to determine
the spatial order of the two letters with high precision. In contrast,
significant overlapping of the two distributions could cause the let-
ters to be localized in the wrong relative position, i.e. in reversed
left-to-right order (see Fig. 1). This leads to the hypothesis that
the imprecision of letter position coding, which is directly related
Fig. 1. A schematic cartoon depicting how mislocation errors could occur. If samples from
letter ‘‘c”, drawn from the distribution centered on letter position -3 (three letter spa
mislocation error.
to the spread, or the position noise of the underlying centroid dis-
tributions, could account for mislocation errors made in identifying
letter strings. This hypothesis predicts that the rate of mislocation
errors should increase with the position noise (the width) of the
underlying distributions for letter position coding.

In this paper, we first present a simple probabilistic model
embodying these concepts. The key parameter of the model is
the standard deviation of the underlying distribution of position
noise, representing the imprecision of position coding. In Experi-
ment 1, we examined the ability of the model to fit the empirical
data on the accuracy of identifying letters at various letter posi-
tions, and how the distance from fixation affects the position noise
standard deviation. In the experiment, we measured the rate of
mislocation errors when the identities of pairs of letters were
known to the observers and the task was to indicate the relative
position of the two letters. In Experiment 2, we extended the use
of the model to account for mislocation errors in the more impor-
tant case of identifying pairs of unknown letters in the correct or-
der. Experiment 2 included three letter sizes, enabling us to
determine the impact of letter size on the model’s noise standard
deviation. We also examined the potential benefit of a pre-cue
for guiding spatial attention to the target location by reducing
the position noise.

Our model is similar in its basic concept to the ‘‘Overlap Model”
recently described by Gomez, Ratcliff, and Perea (2008). By assum-
ing position uncertainty, the overlap model accounts for a number
of well-known effects observed in the recognition of strings of let-
ters including replacement errors, transposition errors, letter
migration errors, insertion errors and repetition of letters. In the
Gomez et al. study, subjects saw strings of five briefly presented
letters (60 ms), and then tried to choose this target string from a
pair of subsequently presented strings (two-alternative forced
choice). The foils differed from the target strings in having letter
transpositions, letter insertions, etc. Accuracy data were inter-
preted using the overlap model. This model, with its six free
parameters (Experiment 1) did well in modeling most of the types
of letter response errors. Gomez et al. were primarily interested in
position uncertainty associated with relative position within the
string. For example, their results indicate that position uncertainty
is least for the leading letter, increasing monotonically so that the
final letter exhibits the largest uncertainty (their Table 3). Presum-
ably, these findings are influenced by both bottom-up factors such
as crowding and distance from fixation, and top-down factors such
as the lexical status of strings (word vs. non-word, their Experi-
ment 2), linguistic and memory effects in matching the target to
the two alternatives in the forced-choice procedure. By contrast,
our interest was focused primarily on early sensory coding, espe-
cially the impact of retinal eccentricity and character size.
the two distributions are drawn with the values indicated by the arrows, then the
ces left of fixation) would be perceived as on the left of letter ‘‘e”, constituting a
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2. Methods

Letter identification accuracy was measured for pairs of letters
presented sequentially in two adjacent letter positions, extending
eight letter slots left and right of fixation. Each pair of adjacent
letter positions was tested 10 times in a block in a random order,
with a total of 160 trials per block. Letters were chosen randomly
from the 26 lowercase letters of the alphabet, with the constraint
that the two letters of any pair could not be the same. The fixa-
tion target consisted of two small green dots that were vertically
separated by approximately 1.2�, a separation larger than the
largest letter size used in the study, so that the fixation dots
would not mask the letters presented at fixation. Previously,
Beard, Levi, and Klein (1997) showed that when the two elements
of a Vernier target were presented sequentially with at least
20 ms inter-stimulus interval between the offset of one and the
onset of the other, localization thresholds were independent of
stimulus feature characteristics such as contrast polarity and vis-
ibility, reflecting the properties of the local sign mechanism but
not those of the spatial filter mechanisms. Here, we borrowed
their sequential-presentation paradigm and presented letters
asynchronously each for 50 ms to isolate the local sign mecha-
nism for position judgments of letters. Our assumption was that
position signals for letters in strings are determined by the local
sign mechanism and not by the spatial filter mechanism underly-
ing typical measures of Vernier acuity. The order of whether the
right or left letter of the pair was presented first was randomized
across trials. We included a mask, a row of 21 ‘#’ symbols, that
covered up to 10 letter slots left and right of fixation, before
and after each letter in order to minimize the contamination of
position signals due to motion cues or cues from spatial filters.
The mask did not provide information about the position or iden-
tity of the target letters.

A trial began with the observers fixating midway between the
two green fixation dots at a viewing distance of 40 cm. Once ini-
tiated by the observers, a trial lasted 250 ms and was comprised
of the following sequence: the mask, the first target letter of the
pair, the mask, the second target letter of the pair and the mask
(Fig. 2). Each component (letter or mask) was presented for
50 ms. The observer’s task was to identify the pair of letters,
from left to right, regardless of which letter was presented first.
Feedback on accuracy was not provided to the observers. Testing
was binocular.

Stimuli were generated using a Silicon Graphics O2 worksta-
tion and presented on a Sony monitor (model# GDM-17E21).
Letters were rendered in Courier font, a fixed-width font, so
that the center-to-center spacing between adjacent letters was
constant regardless of the letter identity. For the Courier font,
the center-to-center spacing is 1.16� the width of the lowercase
letter ‘‘x”. When we express the distance of a letter from fixa-
tion as letter position in this paper, we use this 1.16� x-width
as the width of each letter position. However, in order to be
consistent with the conventional expression of letter size, we
specify our letter size with respect to the x-height. For the Cou-
rier font, we measured the x-width to be 1.35� x-height, in
other words, each letter position is equivalent to 1.57� x-height.
Letters and masks were presented as high-contrast (ca. 90% We-
ber contrast), black letters (symbols) on a white background of
45 cd/m2.

Six observers, all with corrected-to-normal vision of 20/20 or
better in each eye, participated in the study. Written informed con-
sent was obtained from each observer after the procedures of the
experiment were explained, and before the commencement of data
collection. With the exception of author SC, none of the observers
was aware of the purpose of the experiments.
2.1. Basic experimental design

In Experiment 1, we measured human performance for judging
the relative position of pairs of letters of known identity pre-
sented asynchronously, as a function of distance from fixation
(measured as the number of letter positions). By allowing the
identity of the letters to be known, demands on identification
were minimized so that any errors made on the task represented
primarily mislocation errors. Letters were 0.8� (x-height). Before
each trial, we showed the two letters for the upcoming trial ver-
tically aligned above the fixation target (see Fig. 2C). The relative
vertical arrangement of the two letters was randomized from trial
to trial, and did not indicate the temporal order or the relative
spatial location of the two letters. Four of the six observers partic-
ipated in this experiment. Each of these observers completed four
blocks of trials.

In Experiment 2, we examined human performance for letter
position coding using a task that more closely resembles the con-
ventional task of identifying strings of letters in words. The identity
of the letters was not disclosed before each trial and observers had
to identify the letters, in addition to judging their relative position.
Because previous studies have shown that coding of position based
on stimulus centroid is size-dependent, we tested three letter
sizes: 0.3�, 0.5� and 0.8�. We also asked whether the spatial uncer-
tainty associated with presenting letter pairs at many possible
locations adversely affected our results, given that observers had
to distribute their spatial attention to monitor all these locations.
To do so, in half of the blocks, a vertical green line (pre-cue) of
the same length as the x-height of the letters was presented before
each trial, marking the mid-point between the two adjacent letters
in the upcoming trial (see Fig. 2D). The pre-cue disappeared as
soon as the observer initiated a trial, and reappeared (in a different
location for the next trial) as soon as the observer’s response was
recorded. The pre-cue never overlapped with any letter parts spa-
tially or temporally. Potentially, the pre-cue could improve letter
identification performance by guiding covert attention to the stim-
ulus location prior to stimulus onset. Each observer completed four
blocks of trials for each combination of letter size and the presence
or absence of the pre-cue. These blocks were tested in a random or-
der for each observer.
2.2. Data analyses

In each trial, observers named the two letters from left to
right. Trials for which the responses for both letters were incor-
rect were excluded from analysis. For the rest of the trials, we
scored the responses in two ways to assess the impact of spatial
mislocation errors. The exact method requires that the response
letter matches the corresponding stimulus letter in both the
identity and the position of the letter within the pair. The
either-position method is more forgiving. The response letter is
deemed correct as long as it matches either of the two stimulus
letters of the pair. The ratio of the proportion-correct scored by
these two methods (exact/either-position), which we shall refer
to as Rscore in this paper, yields the proportion of responses in
which letters were localized in the correct positions. By subtract-
ing Rscore from 1, we obtained the proportion of responses in
which letters were identified correctly but in the wrong posi-
tion—the empirically determined rate of mislocation errors. This
analysis provides an estimate of the mislocation error rate with-
out contamination by the identification accuracy (see Appendix
for details). As an example, for letter position 3 to the right of
fixation, suppose that the either-position scoring method yields
a performance measure of 80% correct, and the exact method



Fig. 2. (A) A schematic cartoon depicting a sample trial for the different testing conditions. The stimulus letters, from left to right, were ‘‘ec”. (B–D) The different looks of the
get-ready screen before the observer initiated a trial. In (B), only the pair of fixation dots (green in the actual experiment) was shown. (C) Experiment 1: the two target letters
in the upcoming trial were presented above the pair of fixation dots before the trial. The relative position of the two letters was random and did not indicate the spatial or
temporal order of the two letters in the trial. (D) Experiment 2: a short green vertical line indicating the mid-point of the two letters in the upcoming trial was shown. This
green line served as the pre-cue.

Table 1
Types of responses to the stimulus letter pair ‘‘ec”, and how the responses were scored
according to the exact and either-position criteria.

Response Exact Either-position

Left
letter

Right letter Left
letter

Right letter

‘‘ec” U U U U

‘‘ce” � � U U

‘‘eo” U � U �
‘‘oe” � � U �
‘‘sc” � U � U

‘‘cs” � � � U

‘‘so” Trial excluded
from analysis

Trial excluded
from analysis
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yields 60% correct. The corresponding value of Rscore is 0.60/
0.80 = 0.75. This means that the letter was properly localized
on 75% of the trials in which it was correctly identified. The va-
lue 1 � Rscore, or 0.25 in this example, represents the proportion
of mislocations, that is, the letter was mislocalized on 25% of the
trials in which it was correctly identified. Table 1 summarizes
how we scored the different types of responses to the same
stimulus letter pair (‘‘ec” is used as an example). Letter identifi-
cation performance reported in this paper was corrected for
guessing (chance level = 0.0384).1
1 The corrected-for-guessing performance is given by (observed performance –
chance level)/(1 – chance level).
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2.3. Model

Our model assumes that the encoded positions of the letters are
stochastically independent, Gaussian distributed with a mean
equal to the true retinal eccentricity and a standard deviation that
increases linearly with distance from fixation. We assume an ob-
server’s response in judging the spatial ordering (relative position)
of a pair of adjacent letters is based on the magnitudes of the posi-
tion signals; the letter with the larger position signal is judged to
be farther from fixation. Because of the noise in the distributions
of position signals (Fig. 1), a letter which is physically closer to fix-
ation may be judged farther yielding a mislocation error.

2.3.1. Estimating the standard deviation of the Gaussian distribution
The following derivation, culminating in Eq. (3), shows how the

model’s standard deviation S of the underlying distribution of po-
sition signals at a given letter position x is related to the z-score
for the empirically measured proportion of mislocation errors
(1 � Rscore) at that location.

For an adjacent pair of letters at letter positions x and x + 1, the
standard deviation of the encoded position for each letter can be
represented by S(x) and S(x + 1). The distribution of the encoded
letter position difference is Gaussian, with a standard deviation Sdiff

given by Eq. (1). The sign of a sample value taken from this differ-
ence distribution indicates whether or not the correct ordering of
letters is preserved (+ sign: correct ordering; – sign: reversed
ordering).

Sdiff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SðxÞ2 þ Sðxþ 1Þ2

q
ð1Þ

For simplicity, we assume that the standard deviations at adja-
cent letter positions are approximately equal, i.e. S(x) � S(x + 1),
although as can be seen later, the standard deviation increases
slowly with distance from fixation.

The proportion of mislocation errors, given empirically by
1 � Rscore, corresponds to the area of the difference distribution to
the left of zero. To estimate the standard deviation of the distribu-
tion of the position signals, we first converted Rscore into its corre-
sponding z-score.2 The z-score is related to the presumed standard
deviation of the distribution of the position signals according to
the following equation:

z ¼ difference between the mean of the two distributionsffiffiffi
2
p

S
ð2Þ

where S is the standard deviation at location x.
Since letters were presented in adjacent letter positions, the dif-

ference between the mean of the two distributions (i.e. the center-
to-center distance between adjacent letters) was always one letter,
therefore

S ¼ 1ffiffiffi
2
p

z
ð3Þ

To summarize, the model’s standard deviation S at letter posi-
tion x is estimated from Eq. (3) using the z-score associated with
Rscore.

2.3.2. Linear scaling
Next, we derive expressions for the change in the model’s value

of S with letter position x from fixation. Beard et al. (1997) showed
that the imprecision of local signs increases linearly with eccen-
tricity in peripheral vision. Following Beard et al., we assume that
S follows a linear scaling law:
2 This was obtained using the built-in normsinv function in Microsoft Excel.
Essentially we sought the value z such that normsinv(z) = probability of correct
responses.
S ¼ S0 þ kx ð4Þ

where S is the model’s standard deviation at letter position x from
fixation, S0 is the standard deviation at the fovea and k is a scaling
constant. This equation can be rewritten as

S ¼ S0 1þ x
X2

� �
ð5Þ

where k = S0/X2 and X2 is the letter position at which the foveal
value (S0) of the standard deviation doubles.

Note that our derivation has used letter position from fixation
to represent the distance from fixation. To convert to degrees of vi-
sual angle (more commonly used to express scaling laws associ-
ated with retinal eccentricity), we simply multiply the values in
Eqs. (4) and (5) by the letter size in degrees. For instance, if the let-
ter size (x-height) is 0.5�, and the doubling distance X2 is 3 letters,
the corresponding doubling distance in degrees is 3� � 1.57� �
0.5� = 2.36�. When the doubling distance is expressed in degrees,
it is commonly referred to as E2 (Levi, Klein, & Aitsebaomo, 1984,
1985).

2.3.3. Model prediction and validation
In both Experiments 1 and 2, for each letter position, we first

calculated Rscore, the ratio of proportion-correct for the exact and
either scoring methods. We then converted this ratio into a z-score.
This z-score was used to estimate a value for the model’s standard
deviation S using Eq. (3). S characterizes the breadth of the Gauss-
ian distribution of possible positions for a letter at a given distance
x from fixation. By assuming a linear scaling law as detailed above,
we generated the two parameters of a linear equation of the form
of Eq. (4) showing how SD depends on eccentricity. To improve the
quality of the fits, we combined data from the right and left hemi-
fields (justified by statistical analyses, see Section 3). These proce-
dures allowed us to create a model for describing our data. We
then assessed how well the model fit our data. To do so, we re-
versed the process: with the parameters derived from the scaling
law, we first computed the predicted standard deviations for each
letter position. From these predicted values, we calculated the pre-
dicted z-scores using Eq. (3), which were subsequently converted
into the predicted proportion-correct for letters identified in the
correct positions. The predicted mislocation error rate was given
by subtracting the expected proportion-correct from 1.
3. Results

3.1. Experiment 1: position judgments for letters with known identity

Proportion-correct for letter identification, scored by the exact
and either-position methods, is plotted as a function of letter posi-
tion in Fig. 3. The large panel presents the averaged data of the four
observers, with the small panels showing the individual data. Data
were collected for 0.8� letters. In this experiment, the identities of
the two letters were disclosed to observers before each trial. For
each letter position, half of the trials had the left letter of the pair
shown at that position and the other half of the trials had the right
letter shown at that position. Averaged across observers, there was
no significant difference in letter identification performance for the
left versus the right letter for all letter positions, for either of the
two scoring methods (paired t-test, exact: t(df = 14) = 0.14,
p = 0.89; either-position: t(df = 14) = 0.4, p = 0.70). Hence, for the re-
sults of this experiment, the performance reported for each letter
position was the performance pooled between trials for the left
and right letters.

Because observers knew the identity of the letters, performance
scored by the either-position method was very close to 100%,
although observers still made a small number of errors indepen-



Fig. 3. Proportion-correct for letter identification is plotted as a function of letter position from fixation (negative values: left of fixation; positive values: right of fixation) for
four observers. Individual observers’ data are shown in the small panels while the averaged data are shown in the large panel. Data were collected for 0.8� letters the identities
of which were disclosed to observers before each trial. Data were scored according to the exact (filled circles) and the either-position (unfilled circles) methods.
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dent of letter position. When performance was scored using the ex-
act method, not surprisingly, performance dropped, but the drop in
performance varied with letter position. The best letter identifica-
tion performance (proportion-correct) was obtained at fixation
(letter position 0) and averaged 0.84 across the four observers. Per-
formance progressively decreased for letter positions further away
from fixation. At seven letter slots away from fixation, accuracy for
the exact criterion was approximately 0.67.

Fig. 4A shows that the proportion of mislocation errors
(1 � Rscore) increases with letter positions from fixation. Note that
at fixation, mislocation errors still occurred, although the rate
was the lowest (approximately 16%). The rate increases to approx-
imately 33% at seven letter slots away from fixation.

We estimated the standard deviation of the underlying distribu-
tion for position coding at each letter position (see Section 2). The
estimated standard deviations corresponding to the same letter
position in the left and right hemifields were combined, because
there was no significant difference in the SDs between the two
hemifields (t-test: p = 0.93). A regression line of the form of Eq.
(4) was used to fit these data from which the foveal SD and the rate
of change of SD with letter position were derived (Fig. 4B). Using
the fitted parameters, we generated the SD at each letter position
as predicted by our model (see Section 2). Fig. 4A compares the
proportion of mislocation errors based on the model fit (smooth
Fig. 4. (A) Proportion of mislocation errors (1 � Rscore) for data shown in Fig. 3 is plotted a
(see text for details). The values for the model fit are based on the estimated standard
mislocation errors. (B) The standard deviation of the distribution of the position signals at
of letter position (unfilled circles). The solid line represents a regression line (Eq. (4)) fit
lines) with the empirical mislocation error rate (circular symbols).
Clearly, our model provides a reasonable description of the empir-
ical data, implying that the SD of the underlying distribution of po-
sition signals for the letters can explain the rate of mislocation
errors.

3.2. Experiment 2: position judgments for letters with unknown
identity

In the previous experiment, the observer knew the identity
of the stimulus letters before the trial and needed only to deter-
mine the relative position of the two letters. Can our model also
predict the mislocation error rate for the more typical task of iden-
tifying strings of letters in the correct order when neither the letter
identity nor relative position is known ahead? In Experiment 2, we
measured letter identification performance when the letter iden-
tity was not disclosed to observers before each trial. We also tested
the effect of letter size and the use of a pre-cue to guide the deploy-
ment of spatial attention.

Fig. 5 compares the letter identification performance, scored by
the exact and either-position methods, as a function of letter posi-
tion for the six observers who participated in this experiment. The
letter size was 0.5� and the pre-cue was used. As in Experiment 1,
for each letter position plotted on the x-axis, half of the trials had
s a function of letter position (unfilled circles). The solid line represents the model fit
deviations shown in panel B, converted to z-scores (Eq. (3)) and then the rate of
each letter position (left and right side of fixation combined) is plotted as a function
to the data. The fitted parameters are given in the panel.



Fig. 5. Proportion-correct for letter identification is plotted as a function of letter position from fixation (negative values: left of fixation; positive values: right of fixation), for
the six observers. Letter size was 0.5� and the pre-cue was used. The two curves in each panel represent the same set of data scored by the exact and the either-position
methods.
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the left letter of the pair shown at that position and the other half
of the trials had the right letter shown at that position. Averaged
across observers and letter positions, there was no significant dif-
ference in letter identification performance for the left versus the
right letter, for either of the two scoring methods (exact:
t(df = 178) = 1.03, p = 0.31; either-position: t(df = 178) = 1.64, p = 0.10).
Hence, for the results of this experiment, the performance reported
for each letter position was the performance pooled across trials
for the left and right letters.

Fig. 6 compares letter identification performance, averaged
across the six observers, as a function of letter position for the
three letter sizes (0.3�, 0.5� and 0.8�), with and without the pre-
cue. The general profile of how letter identification performance
changes with letter position is very similar for the three letter sizes
and in the presence or absence of the pre-cue. In each panel, results
for the two scoring methods are plotted separately. Not surpris-
ingly, performance was always better when data were scored using
the either-position method than with the exact method.

As in Experiment 1, we estimated the model standard deviation
S of the distribution of the encoded letter position based on Rscore

(data shown in Fig. 6). These standard deviations are plotted in
Fig. 7 as a function of eccentricity in units of letter spaces, for the
three letter sizes, with and without the pre-cue. A two-factor
ANOVA showed that when standard deviations were expressed in
letter position units, neither the main effect of letter size
(F(df = 2,84) = 2.58, p = 0.08) nor the use of a pre-cue (F(df = 1,84) =
1.48, p = 0.23) affect the estimated standard deviations. The mean
values of standard deviations, computed across all letter positions,
are 1.16 ± 0.46, 1.04 ± 0.35 and 0.97 ± 0.23 letter positions for 0.3�,
0.5� and 0.8� letters, respectively, for the no-cue condition. In the
presence of the pre-cue, the mean standard deviations are
1.06 ± 0.30, 1.00 ± 0.33 and 0.87 ± 0.22 letter positions for the three



Fig. 6. Proportion-correct for letter identification, combined across the six observers, is plotted as a function of letter position from fixation (negative values: left of fixation;
positive values: right of fixation), for the three letter sizes (0.3�, 0.5� and 0.8�) and the uncued/cued conditions. The two curves in each panel represent the same set of data
scored by the exact and the either-position methods.
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letter sizes. The virtually constant values of the model standard
deviation (in letter position units) for different letter sizes implies
that the precision of position signals for letters scales with letter
size, consistent with previous findings for the effect of stimulus
size on positional accuracy (Patel et al., 1999; Whitaker & Walker,
1988).

The pre-cue had no significant effect on the value of the model
standard deviation. The mean values are 1.06 ± 0.36 and
0.98 ± 0.29 letter positions without and with the pre-cue, respec-
tively. Apparently, guiding the deployment of spatial attention
has virtually no effect in enhancing the precision of position coding
for letters.

We also compared the empirically determined rate of misloca-
tion errors (1 � Rscore) with the model prediction as described in
Experiment 1. The predicted model values were generated by first
combining the estimated values of standard deviation for the same
nominal letter position in the right and left hemifields (unfilled
symbols in Fig. 8), as we did in Experiment 1, and fitting the data
with a regression line of the form of Eq. (4) from which the foveal
standard deviation and the rate of change of the standard deviation
with letter position (the slope parameter k) were derived. To com-
pare the model predictions for Experiments 1 and 2, we included in
the bottom panel of Fig. 8 (letter size 0.8�) the regression line fit for
the data in Experiment 1, which was shown in Fig. 4B. The regres-
sion line of Experiment 1 (dashed line) has a steeper slope and was
shifted vertically upward when compared with the regression line
fit of Experiment 2. The upward shift of the line implies a higher
rate of mislocation errors in Experiment 1, which could be due to
the fact that in Experiment 2, we excluded from analysis trials in
which the identities of both letters were incorrect.

The model prediction for Experiment 2 was then converted into
the rate of mislocation errors which are plotted in Fig. 9. Even



Fig. 7. Estimated standard deviation (in letter spaces) derived from the data
combined across the six observers, is plotted as a function of letter position, for the
three letter sizes and the uncued/cued conditions.

Fig. 8. Estimated standard deviation of the distribution of position coding (in letter
spaces) is plotted as a function of letter position, for the three letter sizes. SDs
obtained for the same nominal letter position left and right of fixation were
collapsed as one single value. A linear regression line (Eq. (4)) was fit to each set of
data (for each letter size), from which the foveal SD (parameter S0) and the slope of
the line (parameter k) were estimated.
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when the letter identity was not disclosed to observers beforehand,
our model still provides a reasonable description of the empirical
rate of mislocation errors.

4. Discussion

The goal of this study was to examine the precision of position
coding for letters, and to determine whether or not the imprecision
of letter position coding could account for errors made in identify-
ing letter strings. In two experiments, we measured the accuracy of
position signals for letters as a function of eccentricity, with and
without the letter identity being disclosed to observers before test-
ing. We also examined the effects of letter size and the deployment
of spatial attention on the accuracy of positional signals. We
characterized the precision of position signals for letters by the
standard deviation of a hypothetical underlying Gaussian distribu-
tion centered on the letter position. Our data show that the posi-
tion signal becomes increasingly imprecise with eccentricity.

4.1. Localizing the centroid of a letter

The 26 lowercase letters used in this study do not have regular
shapes and each of them contains different letter features. Patel
et al. (1999) measured Vernier thresholds for pairs of random
shapes and compared the thresholds with those obtained for
two-dot stimuli. They found that Vernier thresholds for random
shapes are generally higher than those for dot stimuli. To account
for the difference in thresholds for regular and irregular shapes,



Fig. 9. Proportion of mislocation errors is plotted as a function of letter position left
and right of fixation (letter position 0). The empirical values are the differences in
proportion-correct between the two curves in Fig. 6, averaged across the six
conditions. Values plotted are data combined across the six observers and averaged
across the six conditions (three letter sizes � two cueing conditions). The model fit
was derived from the linear regression lines depicted in Fig. 8.
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Patel et al. (1999) proposed that the determination of the centroid
of regular shapes may rely on high-level learnt rules of geometry
while that for irregular shapes may involve a noisier low-level cen-
troid computation scheme, one that depends on the number of
‘‘position detectors” within the stimulus. Based on statistical
grounds, the precision of determining the centroid of a stimulus
would improve with the number of detectors.

If each letter feature3 has its own local sign, and the centroid of
the letter is computed from these component local signs, then two
factors could contribute to decreasing precision of letter position
outward from fixation—a decrease in the number of features per let-
ter, or increasing imprecision in the local signs of the component
features.

Improper binding of letter features has been proposed to play a
role in crowding and is a third possible factor underlying decreas-
ing precision of letter-position signals. Levi, Hariharan, and Klein
(2002) and Pelli, Palomares, and Majaj (2004) provided evidence
that crowding is not due to a failure of feature detection, but more
likely due to imperfect feature integration. According to this view,
letters interfere with each other because their component features
become jumbled (imperfect feature binding) during pattern recog-
nition. Here, we suggest that in addition to accounting for letter-
identity errors, misbinding of letter features could also play a role
in mislocation errors. The determination of centroid is a weighted
computation taking into account the distance of individual features
from the centroid, and misbinding of features could result in a
change of centroid location. It is possible that the misbinding of
letter features could result in identification errors without misloca-
tions, and also mislocations without identification errors.

4.2. E2 for position signals

Thresholds for almost all spatial tasks are known to increase (i.e.
worsen) with eccentricity from the fovea. The E2 parameter (the
eccentricity at which threshold is twice the value at the fovea) is
commonly used to represent the rate of change of the threshold of
interest with eccentricity (e.g. Levi et al., 1984, 1985; Toet & Levi,
1992). A high E2 value implies that the variable of interest changes
slowly with eccentricity whereas a low E2 value implies that the var-
iable changes quickly with eccentricity. For instance, maximum
reading speed decreases with eccentricity with an E2 of 4.13�
(Chung, Mansfield, & Legge, 1998), contrast sensitivity, detection
and resolution thresholds increase with eccentricity with an E2 of
about 2.5� (Levi & Klein, 1990; Virsu, Näsänen, & Osmoviita, 1987;
Virsu & Rovamo, 1979), letter acuity and the critical print size for
reading change with eccentricity with an E2 of about 1.5� (Chung
et al., 1998; Herse & Bedell, 1989). However, the most rapid increase
in threshold with eccentricity is usually reported for hyperacuity
tasks such as bisection, Vernier judgment and spatial interval dis-
crimination, with an E2 value of 0.6–0.8� (e.g. Beard et al., 1997; Levi
& Klein, 1990; Virsu et al., 1987; Waugh & Levi, 1993; Wilson, 1991).

Previously, Beard et al. (1997) reported that for asynchronously
presented Vernier targets that are thought to be mediated by the
local sign mechanism, thresholds increase in peripheral vision with
an E2 of about 0.8�. Because we postulated that a similar mecha-
nism could underlie the precision of position coding for letters,
we asked whether letter position judgment would vary with
eccentricity with an E2 of about 0.8�. An estimation of the E2 value
can be obtained from Fig. 8 in which we fit linear regression lines
to the SD of the distribution as a function of letter position. The E2

values obtained were 4.0, 4.4 and 6.3 letter positions from fixation,
3 We do not yet know what constitutes a ‘‘letter feature”. There are suggestions
that letter features could be individual strokes of a letter, edges or spatial frequencies
of a letter, or even chunks of pixels that make up a letter. Our argument here does no
distinguish among these alternatives and applies to all of these possibilities.
t

for 0.3�, 0.5� and 0.8� letters, respectively. When converted to de-
grees and assuming that adjacent letters were 1.16� the x-width
for Courier letters, these E2 values correspond to 1.88�, 3.45� and
7.91� for the three letter sizes, respectively. Clearly, these E2 values
are all substantially greater than the 0.8� reported by Beard et al.
(1997), for their Vernier judgment task.

An explanation for the higher E2 values obtained in this exper-
iment than in Beard et al. (1997) is probably related to the size
scaling we observed. For our task, the E2 is size-dependent, a likely
consequence of the reliance on the centroids of the letters in mak-
ing judgments of the relative positions of a pair of adjacent letters.
The larger E2 for larger target size is consistent with reliance on
coarser features with more gradual dependence on retinal eccen-
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tricity. It is known that the crucial band of spatial frequencies for
analyzing large letters is shifted toward higher object spatial fre-
quencies (in cycles per letter) compared with smaller letters
(Chung, Legge, & Tjan, 2002; Majaj, Pelli, Kurshan, & Palomares,
2002). Because the change in position threshold with eccentricity
is slower for low spatial frequencies (higher E2 value) than high
spatial frequencies (Toet, Snippe, & Koenderink, 1988), the change
in position signals for letters with eccentricity should be slower for
large letters than for smaller ones.

4.3. Linking letter position coding to crowding and reading

Letters appear as ordered strings in words. Recent findings indi-
cate that the visual span for reading (the number of adjacent letters
that can be recognized reliably on one fixation) limits reading
speed (Legge et al., 2007), and that crowding is a major determi-
nant of the size of the visual span (Pelli et al., 2007). To the extent
that letter mislocations contribute to crowding and a reduction in
the size of the visual span, they will also limit reading speed.

Here, we found that the imprecision of letter position coding ac-
counts for a sizeable proportion of all the errors made on letter
identity—approximately one-third of the total letter-identity errors
at a distance equivalent to seven letter positions from fixation.
Even at three letter positions left or right of fixation, our results
indicate that there is approximately a 20% chance letters are mis-
localized. If these results generalize to reading, a person fixating
on the leading letter of ‘‘boost” might sometimes read ‘‘boots”.
While context will often be helpful in overriding such errors, mis-
locations might be more disruptive in identifying the leading let-
ters of words rightward of fixation (termed parafoveal preview)
or in correctly encoding long numbers or unfamiliar names.

Many theories have been proposed to account for the crowding
effect, including an optical explanation (Hess, Dakin, & Kapoor,
2000; Liu & Arditi, 2000), spatial scale shift (Chung & Tjan, 2007;
Hess et al., 2000), its distinction from contrast masking by remote
flankers (Chung, Levi, & Legge, 2001; Levi et al., 2002; Pelli et al.,
2004); loss of position information (Popple & Levi, 2005; Strasburg-
er, 2005; Strasburger et al., 1991); abnormal feature integration
(Nandy & Tjan, 2007; Pelli et al., 2004) and a reduced attentional res-
olution explanation (He, Cavanagh, & Intriligator, 1996; Intriligator
& Cavanagh, 2001; Strasburger et al., 1991). An extensive review of
these theories is outside the scope of this paper (for a review, please
refer to Levi, 2008). However, our finding of an increased impreci-
sion of position signal with eccentricity is consistent with at least
the loss of position information and the abnormal feature integra-
tion theories of crowding. According to our model, the loss of posi-
tion information would increase the rate of letter-reversal errors
whereas abnormal feature integration could cause letter-identity
errors as well as errors in localizing the centroid of a letter.

We made two attempts to link letter mislocations to crowding.
The first attempt was to compare the E2 values. The reported E2

values for crowding are approximately 0.9� for an acuity task (Ja-
cobs, 1979), or 0.74� for the spatial extent of crowding (Chung,
unpublished data). In comparison, our estimate of the E2 for the
precision of position coding for letters ranges between 1.88 and
7.91�, depending on letter sizes. The smaller E2 for crowding than
for mislocation errors, along with the fact that crowding is inde-
pendent of target size (Levi et al., 2002; Pelli et al., 2007) and thus
is compatible with the cortical magnification scaling rule, whereas
our estimation of the precision of letter position coding shows a
dependence on letter size, suggest that mislocation errors and
crowding may not share the same underlying mechanism.

Our second attempt was to relate our finding of the rate of
change of mislocation errors with distance from fixation to
‘‘Bouma’s law”. Bouma (1970) first showed that the critical spacing
for crowding is proportional to eccentricity. Pelli et al. (2004), Pelli
et al. (2007) elaborated on Bouma’s original finding and suggested
that the critical spacing at any given eccentricity depends only on
the eccentricity, but not the stimulus size. They further quantified
Bouma’s law to specify the critical spacing as half of the eccentric-
ity, and suggested that a genuine crowding task would follow Bou-
ma’s law, i.e. the critical spacing extends to approximately half the
eccentricity. With respect to our mislocation errors, Bouma’s rule
predicts that at a letter position X away from fixation, the critical
spacing extends to X ± 0.5 X letter positions. For example, the crit-
ical spacing for mislocation errors should be between 2 and 6 letter
positions for a letter presented at four letter positions away from
fixation. When expressed as degrees of visual angle, the critical
spacing for mislocation errors becomes larger for a larger letter
size. This scaling of mislocation errors with letter size is qualita-
tively similar to the scaling of critical spacing of crowding, suggest-
ing that the computation underlying mislocation errors could be
similar to that of crowding.

Taken together, our two attempts in comparing mislocation er-
rors with crowding imply that we cannot completely rule out the
independence of mislocation errors and crowding, although at this
stage, the similarities in properties between the two are not strong
enough for us to conclude that they share the same underlying
mechanism.

4.4. Spatial cueing

In this study, we did not find any difference in the precision of po-
sition coding for letters with or without the pre-cue, nor did we find
any improvement in letter identification accuracy with the pre-cue.
This lack of an advantage of using the pre-cue has been reported in
the literature. Nazir (1992) measured the effect of lateral masking
on the resolution of the gap of a square C-like stimulus at eight pos-
sible locations 4� from fixation. In some of the trials, she presented a
dot cueing the location of the stimulus preceding the trial and found
no systematic differences in her results for the cued and uncued tri-
als. This absence of a precueing effect did not depend on the location
of the stimulus or the type of flankers. Shiu and Pashler (1994) sug-
gested that the controversy over the benefit of a precueing effect
could be due to whether the target is presented by itself in an other-
wise empty field (single-element display) or accompanied by dis-
tractors (multi-element display). They showed that a precueing
benefit is found when multiple masks are used instead of a single
mask following the target, however, the benefit also depends on
the validity of the pre-cue. The precueing benefit disappears when
the target location is validly cued. Given that our pre-cue always val-
idly cued the locations of the two letters in the upcoming trial, our
finding of a lack of the precueing effect is completely consistent with
the report of Shiu and Pashler. Another factor that might account for
the controversy of the precueing benefit is that the precueing effect
is usually reported for stimuli that are very close to the visibility
threshold. The traditional explanation for the precueing effect is that
the cue helps the observers direct their attention to the target loca-
tion and that the observers do not have to monitor, or spread their
attention across many possible target locations. Presumably, supra-
threshold targets can draw and direct observers’ attention to the tar-
get location easily, especially when there is only a single target
presented in an otherwise empty field (as in our experiments). As
such, suprathreshold judgment may not be limited by attention
and could also explain why we did not find a precueing benefit.

4.5. How generalizable is our model?

Given our interest in examining the precision of position coding
of letters, in Experiments 1 and 2, we developed a model that spe-
cifically deals with position coding of letters. We showed that the
model provides a reasonable description of our empirical data on



Fig. 10. The SD of the intrinsic blur (in deg) for localizing peripherally presented
Gaussian or Gabor patches is plotted as a function of stimulus eccentricity (black
triangles; data replotted from Levi and Tripathy (1996)). For comparison, the
estimated SD of the distribution of letter position coding as reported in Fig. 8,
converted to degrees, is plotted as a function of letter position, converted to
eccentricity in degrees, for the three letter sizes (open circles). Straight lines
represent the model predictions. The data for localizing Gaussian or Gabor patches
follow the trend of our model predictions reasonably well.
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letter identification. Can our model be generalized to other posi-
tional judgment tasks?

Levi and Tripathy (1996) examined human accuracy for localiz-
ing the position of a peripherally presented target, a task that is rel-
evant to ours. Using Gaussian or Gabor patches, they found that
when localization thresholds are plotted as a function of the stan-
dard deviation (SD) of the stimulus envelope, thresholds remain
independent of SD for SD less than 1/5 of the stimulus eccentricity.
When SD exceeds a certain critical point, referred to as the intrinsic
blur, thresholds increase roughly linearly with increasing SD. The
intrinsic blur therefore provides an estimate of the best precision
of position coding for a peripheral target. In Fig. 10, we replotted
their estimated intrinsic blur values (Table 1 in Levi & Tripathy,
1996) as a function of stimulus eccentricity (shown as black trian-
gles). Values plotted were averaged across observers who partici-
pated in the same testing condition. To show how their data
compare to our model prediction, we included the standard devia-
tions of the distribution of the position signals obtained in Experi-
ment 2, replotted from Fig. 8 and converted to degrees of visual
angle as unfilled circles. The straight lines are predictions from our
model fit. Clearly, even though the task of Levi and Tripathy (1996)
differed from our letter identification task, their data follow the
trend of our model prediction reasonably well, suggesting that our
model, one that relates the standard deviations of the underlying
distribution to positional judgment accuracy, could be generalized
to account for performance on other positional judgment tasks.

5. Conclusions

In this paper, we have presented data showing that subjects
make more letter-reversal errors with increasing distance from fix-
ation. We interpret this finding to indicate that the coding of letter
position becomes increasingly imprecise with distance from fixa-
tion. A simple noise model describes the data. The model assumes
that the encoded position of each letter is Gaussian distributed and
that the spread of the distribution governs the precision of localiz-
ing the letter. The key variable of the model is the standard devia-
tion of the Gaussian distribution of position signals at any given
retinal eccentricity. The value of the standard deviation depends
on character size, consistent with a computation of pattern posi-
tion based on a global statistic such as the centroid of component
feature locations.
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Appendix A

A.1. Underlying model

We assume that a stimulus contains a pair of letters L1 and L2 ar-
ranged side by side. A stimulus is encoded by the response of ‘‘feature
detectors” in the visual pathway. A segmentation process divides the
feature responses into two bundles of features B1 and B2.

A recognition algorithm is run independently on B1 and B2. Let
the probability of a correct identification of L1 from bundle 1 be
P1, and the probability of a correct identification of L2 from bundle
2 be P2.

An independent position finding algorithm is run on bundle 1 to
estimate its position (e.g. a centroid computation), and also on
bundle 2. Let the resulting estimated horizontal positions be H1
and H2. Assume that the probability of a correct spatial relation-
ship between H1 and H2 is H12. The probability of a mislocation
would be 1-H12.

A.2. Probabilities of eight outcomes

Assuming all of the computations are independent, there are
eight possible outcomes for the response, determined by whether
or not the first letter is right or wrong, the second letter is right
or wrong, and whether or not the spatial order is right or wrong:
Case
 L1 Identity
 L2 Identity
 Spatial order
 Probability
1
 Correct: P1
 Correct: P2
 Correct: H12
 P1P2H12

2
 Correct: P1
 Correct: P2
 Wrong: 1-H12
 P1P2(1-H12)

3
 Correct: P1
 Wrong: 1-P2
 Correct: H12
 P1(1-P2)H12

4
 Correct: P1
 Wrong: 1-P2
 Wrong: 1-H12
 P1(1-P12)(1-H12)

5
 Wrong: 1-P1
 Correct: P2
 Correct: H12
 (1-P1)P2H12

6
 Wrong: 1-P1
 Correct: P2
 Wrong: 1-H12
 (1-P1)P2(1-H12)

7
 Wrong: 1-P1
 Wrong: 1-P2
 Correct: H12
 (1-P1)(1-P2)H12

8
 Wrong: 1-P1
 Wrong: 1-P2
 Wrong: 1-H12
 (1-P1)(1-P2)(1-H12)
The probabilities listed in the right column have a sum of 1.0.

A.3. Exact and either scoring

The probability of getting the first letter (L1) correct without
regard to letter order (the either scoring), is the sum of the first
four cases listed in the table above. As can be easily verified, the
four corresponding expressions in the right column add up to
P1.

The probability of getting L1 correct and also the correct letter
order (the exact scoring) is determined by adding cases 1 and 3,
that is, P1P2H12 + P1(1-P2)H12 = P1H12.

The ratio of the exact to either scoring is:

Ratio ¼ P1H12=P1 ¼ H12

Similarly, for L2:

Ratio ¼ P2H12=P2 ¼ H12

From the above analysis, the ratio of the exact and either scores
provides an estimate of the mislocation rate, given by 1 � ratio,
without contamination by the identification accuracy.
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