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PURPOSE. It is often difficult to estimate parameters from indi-
vidual clinical data because of noisy or incomplete measure-
ments. Nonlinear mixed-effects (NLME) modeling provides a
statistical framework for analyzing population parameters and
the associated variations, even when individual data sets are
incomplete. The authors demonstrate the application of NLME
by analyzing data from the MNREAD, a continuous-text read-
ing-acuity chart.

METHODS. The authors analyzed MNREAD data (measurements
of reading speed vs. print size) for two groups: 42 adult ob-
servers with normal vision and 14 patients with age-related
macular degeneration (AMD). Truncated sets of MNREAD data
were generated from the individual observers with normal
vision. The MNREAD data were fitted with a two-limb function
and an exponential-decay function using an individual curve-
fitting approach and an NLME modeling approach.

RESULTS. The exponential-decay function provided slightly bet-
ter fits than the two-limb function. When the parameter esti-
mates from the truncated data sets were used to predict the
missing data, NLME modeling gave better predictions than
individual fitting. NLME modeling gave reasonable parameter
estimates for AMD patients even when individual fitting re-
turned unrealistic estimates.

CONCLUSIONS. These analyses showed that (1) an exponential-
decay function fits MNREAD data very well, (2) NLME model-
ing provides a statistical framework for analyzing MNREAD
data, and (3) NLME analysis provides a way of estimating
MNREAD parameters even for incomplete data sets. The
present results demonstrate the potential value of NLME mod-
eling for clinical vision data. (Invest Ophthalmol Vis Sci. 2008;
49:828–835) DOI:10.1167/iovs.07-0555

Parametric characterization of a response function for indi-
vidual patients can be important in assessment and diagno-

sis. However, such characterization is often difficult because of
noisy or incomplete data as a result of the patient’s limiting
condition (e.g., test range restriction attributed to acuity or
field reduction) or insufficient testing time. Mixed-effects mod-
eling is a method of analyzing data from groups of people. In
recent years, mixed-effects modeling has gained popularity in
pharmaceutical, clinical, and behavioral studies.1–4 Here we
present nonlinear mixed-effects (NLME) modeling5–7 of
MNREAD data sets as a robust method of analyzing and sum-

marizing reading speed data, even when the data are incom-
plete. Thereby, we demonstrate the potential value of NLME
modeling for clinical vision data.

Improved reading ability is often the primary goal of vision
rehabilitation for patients with low vision.8 Precise measure-
ments of reading performance provide valuable information for
assessment9–12 and rehabilitation evaluation.13–15 Reading
speed is measured as a function of print size in the MNREAD
test.16–20 Research has shown that reading speed increases
sharply with print size at small print, plateaus at mid-range
print, and decreases gradually at large print (�1.4 logMAR or
2° of visual angle; see Mansfield and Legge21 for details on print
size definitions and conversions).22–24

MNREAD is a continuous-text reading-acuity chart.17,18,20 It
has 19 sentences at print sizes from �0.5 to 1.3 logMAR in
0.1-log steps at a standard viewing distance of 40 cm, capturing
the sharp rising part of the reading speed versus print size
curve at small print and the asymptote at the mid-range print
(Fig. 1). When the MNREAD chart is used at a closer viewing
distance, the measured reading speed curve may also exhibit a
decline at large print size.

The MNREAD curve is often approximated by a two-limb
function composed of two straight lines.22 Three key parame-
ters are used to summarize the function17,20: maximum reading
speed (MRS), critical print size (CPS, the smallest print size at
which MRS can be attained), and reading acuity (RA, the
smallest print size that can be resolved). These parameters
have revealed important differences in reading performance
among patients with age-related macular degeneration
(AMD),19 retinitis pigmentosa,25 and dyslexia26 compared with
people with normal vision. Effects of children’s grade level and
age on these MNREAD parameters have also been found12

(Cheung S-H, et al. IOVS 2006;47:ARVO E-Abstract 5830). Ro-
bust methods for estimating and analyzing the MNREAD curve
provide the tools for answering important research questions
about reading performance.

When the two-limb function is used to fit a set of MNREAD
data, the CPS is defined as the intersection of the two lines.
Thus, the estimation of the CPS hinges on the estimation of the
slope of the rising line at small print. Mansfield et al.19 pointed
out that because of the rapid deterioration in reading speed at
small print and noisier reading speed measurements near the
acuity limit, the estimation of the rising slope can be poor and,
thus, the accuracy and precision of the CPS estimates can be
compromised. Moreover, as shown in Figure 1A, the elbow of
the two-limb function fit is usually to the left of the observed
data, tending to underestimate the CPS. In this study, we
introduce an exponential-decay function to provide smooth fits
for the reading speed versus print size data (Fig. 1B). Similar
smooth nonlinear functions have also been used by other
researchers27 (Massof RW. IOVS 2003;44:ARVO E-Abstract
1284).

Although the MNREAD parameters have been shown to
have high test-retest reliability,28 parameter estimation may be
difficult, or even impossible, when one person’s data set is
noisy or incomplete. For instance, acuity reduction or inade-
quate testing time may result in reading speed measurements
for a compressed range of print sizes. Appropriate grouping of
MNREAD data, for example by diagnosis, and NLME modeling
of the MNREAD curves from appropriately defined groups of
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patients can be a method for estimating parameters if data sets
are incomplete. In clinical settings, when incomplete MNREAD
data are collected, the new data set can be grouped with
existing data sets from patients of similar conditions, and NLME
modeling can be applied. We will illustrate NLME modeling of
an incomplete data set produced by truncating complete sets
of normal data and a data set from a group of patients with
AMD.

To summarize the objectives of this study, we will (1)
introduce an exponential-decay function that models MNREAD
data, (2) introduce NLME modeling as a method of analyzing
MNREAD data, and (3) show the advantage of using NLME
when MNREAD data sets are incomplete.

METHODS

Participants

MNREAD data were collected from two groups of participants. The
first group consisted of 42 adult observers with normal vision (25
women, 17 men), recruited for another study in the laboratory
(Cheung S-H, et al. IOVS 2005;46:ARVO E-Abstract 4784). Their ages
ranged from 19 to 65 years (mean, 33 � 14 years). Best-corrected
binocular visual acuity measured with the Lighthouse distance acuity
chart (Optelec, US Inc., Vista, CA) was better than 20/20 for all
observers in this group. They were all fluent English speakers. The
second group consisted of 14 patients with a primary ocular diagnosis
of AMD; their ages ranged from 65 to 87 years (mean, 78.6 � 5.6
years). They were recruited from the Low Vision Center of the Uni-
versity of Minnesota and Vision Loss Resources (Minneapolis, MN), for
another study in the laboratory.29 All observers in this second group
were native English speakers. Our AMD participants were considerably
older than our normal-vision participants, but this study did not include
any direct comparison between the two groups. Informed consent was
obtained from each observer before testing. The protocol of this study
followed the tenets of the Declaration of Helsinki and was approved by
the Institutional Review Board of the University of Minnesota.

MNREAD Measurements

MNREAD Acuity Charts (Optelec, US Inc.) were used to measure
reading speed as a function of print size. MNREAD measurements in
both contrast polarities (i.e., black on white and white on black) were
made on the normal-vision group but only in regular polarity (black on
white) on the AMD group. The observers were asked to read aloud one
sentence at a time, as the sentences were uncovered one by one from
large to small print. The observers were asked to read as fast and as
accurately as possible. Reading time and number of errors made for
each sentence were recorded on a score sheet and were converted to
reading speed in words per minute by the method described in the test
instructions. Viewing distance was fixed at 40 cm for the normal-vision

group or at a shorter distance, determined on an observer-by-observer
basis, for the AMD group. A simulated incomplete data set was gener-
ated by randomly truncating data either on the rising slope (�CPS �
0.1 logMAR) or at the asymptote (�CPS � 0.1 logMAR) of the
MNREAD curves in the normal-vision group.

Two-Limb Function versus
Exponential-Decay Function

Two functions were used to model reading speed versus print size data
in a log-log scale. The first function was a two-limb function, com-
posed of two straight lines:

f�x� � �e�2 �x � �3� � �1 if x � �3

�1 if x � �3

where x represents the print size in logMAR, f(x) the corresponding
reading speed in log words per minute (logWPM), �1 the maximum
reading speed (MRS) in logWPM, exp(�2) the slope of the first limb (the
slope of the second limb is 0), and �3 the CPSTL. �3 is the intersection
of the two straight lines. The slope of the first limb was parametrized
as exp(�2) to ensure positivity. The three parameters (�1, �2, and �3)
were estimated using optimization procedures either through individ-
ual curve fitting or nonlinear mixed-effects (NLME) modeling.5–7

The second function was an exponential-decay function

g�x� � �1�1 � ek�

k � � e�2�x � �3�

where x represents the print size in logMAR, g(x) the corresponding
reading speed in logWPM, �1 the MRS in logWPM, exp(�2) the rate of
change in reading speed as a function of print size, �3 the print size at
which reading speed is 0 logWPM (i.e., 1 WPM). The rate of change in
the function was parametrized as exp(�2) to ensure positivity. The
three parameters (�1, �2, and �3) were estimated using optimization
procedures through either individual curve fitting or NLME model-
ing.5–7 The CPSED was defined as the print size that yielded a criterion
percentage of the MRS. Linear regressions were calculated for the
CPSED in the exponential-decay function at five different criterion
reading speeds (75%–95% of the MRS) against the CPSTL in the two-
limb function.

Nonlinear Mixed-Effects Models of Reading
Speed Data

Analyses of MNREAD data in a group of observers often involve two
steps: curve fitting for each observer followed by statistical analyses
(univariate or multivariate) on the estimated parameters. Mixed-effects
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FIGURE 1. Illustration of the two
functions. (A) Two-limb function. �1

denotes the MRS in logWPM, and �3

denotes the CPS. (B) Exponential-
decay function. �1 denotes the MRS
in logWPM, and �3 denotes the print
size at which reading speed is 0 log-
WPM (i.e., 1 WPM). CPS is plotted as
an asterisk, and reading acuity (RA)
is plotted as a diamond.

IOVS, February 2008, Vol. 49, No. 2 MNREAD–Nonlinear Mixed-Effects Modeling 829

Downloaded from iovs.arvojournals.org on 08/13/2020



modeling is a powerful statistical framework for combining the two
steps. Because the relationship between reading speed and print size is
nonlinear, we analyzed MNREAD data using NLME models.5–7 Fitting of
NLME models involves an iterative process, in which the means of the
different groups (fixed effects) and the variances within the groups
(random effects) are estimated. Parameters for each individual data set
are then estimated given the estimated means and variances. Details of
the NLME models used in this study are included in the Appendix.

Statistical Analyses

Goodness-of-fit for the individual MNREAD curves was examined by
analyzing the residuals (observed values � predicted values) and the
root-mean-square (RMS) error (square root of the average squared
residuals). We used bootstrap30,31 in most of our statistical analyses
with 10,000 resampling. All reported intervals (in parentheses) were
95% bootstrap confidence intervals (CIbootstrap) estimated using the
bias-corrected and accelerated percentile method (BCa).

32

RESULTS

Two-Limb Function versus
Exponential-Decay Function

Figure 2 is a scatter plot of the RMS error from individual curve
fitting (see Appendix for details) of the two-limb function
(x-axis) and the exponential-decay function (y-axis) from the
data set of the 42 observers with normal vision. RMS error from
the two functions clustered around the equality line, with
more data points below and to the right of the equality line,
indicating that the exponential-decay function provided better
fits (smaller errors). The average differences (95% CIbootstrap in
parentheses) between the RMS errors from the two functions
were 0.0079 (0.0026, 0.0138) logWPM and 0.0061 (0.0007,
0.0121) logWPM for regular contrast polarity (i.e., black on
white) and reversed contrast polarity respectively. Although
the differences were small, they were statistically significant
(psbootstrap � 0.05).

The two left panels (A and C) of Figure 3 show the residuals
as a function of print size for the two-limb (TL) fits and the
exponential-decay (ED) fits in the normal-vision data set. Print
sizes were adjusted relative to the critical print size. Because
we wanted to compare the results on the residuals between
the two function fits, the ED residuals were also adjusted to the
CPSTL instead of the CPSED. As shown in Figure 3A, residuals
from TL fits tended to be negative around the CPSTL, indicating
that the data tended to lie below the fitted curve. The two right
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FIGURE 2. Plot of RMS errors for exponential-decay fits (RMSED)
against RMS errors for two-limb fits (RMSTL) for the normal-vision
group. Data from the regular contrast polarity (black on white) data set
are plotted as filled circles. Data from the reversed contrast polarity
(white on black) data set are plotted as open circles. The gray dashed
line is the equality line.
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FIGURE 3. Residual plots from fit-
ting with the two-limb function (A,
B) and the exponential-decay func-
tion (C, D) for the normal-vision
group. (A, C) Residual is plotted as a
function of print size adjusted rela-
tive to the CPSTL. (B) Two-limb and
(D) exponential-decay panels are the
histograms of the residuals from
print sizes within 0.1 logMAR of the
CPSTL.
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panels (B and D) of Figure 3 show histograms of the residuals
for print sizes within 0.1 logMAR (i.e., one line on the
MNREAD chart) of the CPSTL in the normal-vision data set. The
means of the residuals around the CPSTL were �0.054
(�0.064, �0.045) logWPM and 0.016 (0.006, 0.027) logWPM
for TL fits and ED fits, respectively. In other words, the TL fits
overestimated the reading speed, whereas the ED fits underes-
timated it, but to a lesser extent, near the critical print size.

Critical Print Size from ED Fits (CPSED) versus
Critical Print Size from TL Fits (CPSTL)

Table 1 shows the regression coefficients and the adjusted R2

for linear regressions of CPSED for different reading speed
criteria (75%–95% of the MRS) versus CPSTL for regular polar-
ity. The linear regression results for the reverse polarity data set
were similar to those for the regular polarity data set and are
not shown here. Not surprisingly, the correlations between
CPSED for different criteria and CPSTL were high (adjusted R2

varies from 0.673 to 0.853 for regular polarity and from 0.653
to 0.765 for reverse polarity). Although regression with a
CPSED criterion of 75% gave the highest adjusted R2 values,
CPSED criterion of 85% yielded slopes that were closest to 1. A
slope of �1 makes the conversion between CPSED and CPSTL

straightforward as a mere offset (the y-intercept). For instance,
given that the slope is close to 1 for CPSED criteria of 80% and
85%, the y-intercept is approximately the average difference
between the CPSED and CPSTL. A CPSED criterion of 80% is a
good compromise for high adjusted R2 and slope �1. Figure 4
shows the data and the regression line for CPSED with a crite-
rion level of 80% versus CPSTL for the regular polarity data set.

NLME Modeling of Complete and Incomplete
MNREAD Data Sets

Figure 5A shows a scatter plot of RMS errors from NLME model
fitting (RMSNLME) against the RMS errors from individual curve
fitting (RMSIND) with the exponential-decay function. RMS er-
rors fall almost perfectly on the equality line. The mean differ-
ences of RMSNLME � RMSIND were 0.0025 (0.0017, 0.0040)
logWPM for regular polarity and 0.0020 (0.0016, 0.0029) log-
WPM for reverse polarity.

For both contrast polarities, data were missing in 22 of 42
data sets on the rising part of the MNREAD curve. Figure 6
shows the truncated data sets for the regular contrast polarity.
For the truncated sets with missing data on the rising part, 66%
of data points remained in the data sets on average (number of
remaining data points varied from 8 to 13). For the truncated
sets with missing data on the asymptote, 34% of data points
remained in the data sets on average (number of remaining
data points varied from 4 to 7).

Figure 5B shows a scatter plot of RMS errors from an NLME
model fitting against the RMS errors from individual curve
fitting with the exponential-decay function for the truncated
data sets. The mean differences of RMSNLME � RMSIND were
0.0053 (0.0035, 0.0091) logWPM for regular polarity and
0.0084 (0.0058, 0.0121) logWPM for reverse polarity. The fitted

curves for the regular polarity data sets are shown in Figure 6.
Given a relatively complete data set, individual curve fitting will
often have better fits because estimation of individual parameter
sets from NLME modeling is constrained by the estimated means
(fixed effects) and variances (random effects) of the groups.

RMS errors were calculated when applying the parameter
estimates from the truncated data sets to predict the missing
data. Figure 5C shows a scatter plot of RMS prediction errors
from NLME model fitting against the RMS prediction errors
from individual curve fitting with the exponential-decay func-
tion. (Nine data points [11%] with extreme values, which had
RMSIND �6 logWPM, are not shown on the plot. These ex-
treme values were usually a consequence of problematic pre-
dictions of the missing data on the rising part of the reading
speed curve.) We used median values to summarize the RMS
prediction errors to limit the biases introduced by the extreme
values. Median differences of RMSNLME � RMSIND were �0.09
(�0.16, �0.03) logWPM for regular polarity and �0.06
(�0.10, �0.04) logWPM for reverse polarity.

Figure 7 shows our AMD data set with curves fitted with
NLME modeling (solid lines) and with individual curve fitting
(dashed lines). NLME modeling and individual curve fitting
often produced similar parameter estimates. However, in some
cases, individual curve fitting produced unrealistic parameter
estimates. For example, for AMD10, the estimated MRS and

TABLE 1. Regression Coefficients and Adjusted R2 from Regressing CPSTL on CPSED for Different
Criterion Levels in the Regular Contrast Polarity Data Set for the Normal-Vision Group

Threshold
(% of MRS) y-Intercept Slope Adjusted R2

75 0.0374 (0.0233,0.0505) 0.956 (0.857,1.075) 0.853 (0.729,0.914)
80 0.0670 (0.0518,0.0816) 0.996 (0.882,1.131) 0.836 (0.704,0.903)
85 0.1041 (0.0867,0.1213) 1.047 (0.905,1.200) 0.806 (0.655,0.886)
90 0.1547 (0.1336,0.1760) 1.116 (0.930,1.299) 0.757 (0.576,0.858)
95 0.2387 (0.2108,0.2679) 1.230 (0.968,1.469) 0.673 (0.445,0.812)
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FIGURE 4. Regression of CPS from the ED fits (CPSED) against critical
print size from the TL fits (CPSTL) for the regular polarity data set for
the normal-vision group. The criterion level for CPSED is 80% of the
MRS. The regression line is drawn as the solid line. The equality line is
drawn as a dashed line.
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CPSED (80% of MRS) from individual curve fitting were 7.21
logWPM and 19.82 logMAR, respectively, whereas those from
NLME modeling were 2.15 logWPM and 2.20 logMAR. Table 2

shows the estimated MRS and CPSED (80% of MRS) from indi-
vidual curve fitting and NLME modeling for each of the 14 AMD
patients.
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FIGURE 5. Plots of RMS errors from NLME model fits (RMSNLME) against RMS errors from individual curve fits (RMSIND) for the normal-vision group.
Data from the regular contrast polarity (black on white) data set are plotted as filled circles. Data from the reverse contrast polarity (white on black)
data set are plotted as open circles. The dashed line is the equality line. (A) RMS errors from NLME modeling of the normal-vision data set with
the exponential-decay function. (B) RMS errors from fitting the truncated data sets. (C) RMS errors from predicting the missing data in the truncated
data sets.
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FIGURE 6. Truncated data set (regular polarity) for the normal-vision group. Each panel shows the data from one observer. Missing data were
plotted as crosses and the remaining data as open circles. The solid line is the estimated curve from NLME modeling. The dashed line is the
estimated curve from individual curve fitting.
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DISCUSSION

The exponential-decay function fits for reading speed versus
print size data are reliably better than the two-limb function
fits, but the differences in the overall goodness-of-fit are small.
However, the exponential-decay function did not involve the
same problem of underestimating the CPS inherent in the
two-limb function. Thus, fitting with the exponential-decay
function has potential advantages over the two-limb function
in MNREAD parameter estimation.

On the other hand, the simplification of the curve into two
straight lines in the two-limb function may be easier for re-
searchers and clinicians to understand and interpret. In clinical
settings, the straight lines can often be fitted by eye. Parameter
estimation with the exponential-decay function relies on opti-
mization techniques using computer software.

The exponential-decay function provides a slightly better fit
to the MNREAD curves than the two-limb function but requires
selection of a criterion for the CPS. We found that a CPSED of
80% of MRS yielded print sizes slightly larger (0.07 logMAR)
than the CPSTL values from the two-limb fit. Adopting a more

conservative CPSED criterion of 90% MRS produced print sizes
averaging 0.15 logMAR larger than the CPSTL. When a clinician
prescribes a reading magnifier for a patient with visual impair-
ment, the goal is usually for the magnified print to be at least as
large as the CPS for the patient to achieve MRS.33,34 Whittaker
and Lovie-Kitchin defined “acuity reserve” as the ratio of the
print size intended for reading to the acuity print size.35 If the
acuity reserve is insufficient, reading speed will be compro-
mised. The CPSTL, estimated from the two-limb fit, often un-
derestimates the print size required for reading at the MRS. As
a result, magnifier prescription based on the CPSTL estimate
may underestimate the magnification required for best reading
performance. Magnifier prescription based on the CPSED, with
the criterion of either 80% or 90% of MRS, is more likely to
yield adequate reading performance than magnifier prescrip-
tion based on the CPSTL from the two-limb fit.

Clinicians could modify the CPSED criterion, depending on
circumstances. For example, a higher criterion could be used
for fluent or maximum reading, whereas a lower criterion
could be used for spot reading.35 A lower criterion would
correspond to a smaller print size, lower magnification, and
perhaps slower reading. A higher criterion would correspond
to higher magnification and closer approximation to maximum
reading speed.

Cheong et al.36 suggested a fixed-acuity-reserve (0.3 log
unit) method to determine the magnification needed by low-
vision patients. Table 3 shows the CPSED (80% of MRS) along
with the suggested print size using the fixed-acuity-reserve
method (PSreserve) and their corresponding reading speeds.
The CPSED and the PSreserve are also plotted in Figure 7. In
general, the CPSED suggests a larger print size compared with
the fixed-acuity-reserve method. It should be noted that for
some patients, the CPSED is larger than 1.5 logMAR and might
already have reached the declining portion of the reading-
speed curve for very large print sizes. However, it is unclear
whether AMD patients experience the same downturn as nor-
mally sighted people or whether it sets in at the same logMAR
values. In most cases, magnifier prescription based on the
CPSED may result in better reading performance than the fixed-
acuity reserve method. Magnification based on the CPSED pro-
vides a good starting point in the performance trial process of
magnifier prescription. Thus, it helps reduce the consulting
time and frustration for trial and error in the magnifier pre-
scription process.
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FIGURE 7. Fitted curves for the
AMD data set. Each panel shows the
data from one observer. The solid
line is the estimated curve from
NLME modeling. The dashed line is
the estimated curve from individual
curve fitting. CPSED values are plot-
ted as solid diamonds, and the solid
triangles are suggested print sizes
from the fixed-acuity reserve (0.3 log-
MAR) method.

TABLE 2. Estimated Maximum Reading Speed (MRS) and Critical
Print Size for Reading (CPSED, 80% of MRS) from Individual Curve
Fitting and NLME Modeling for Each of the 14 AMD Patients

Individual Curve
Fitting NLME Modeling

MRS
(logWPM)

CPSED

(logMAR)
MRS

(logWPM)
CPSED

(logMAR)

AMD1 2.07 0.52 2.08 0.54
AMD2 2.32 1.27 2.26 1.18
AMD3 1.68 0.25 1.71 0.32
AMD4 3.19 2.59 2.36 1.43
AMD5 2.09 0.73 2.10 0.75
AMD6 5.25 8.35 2.17 2.09
AMD7 2.24 0.79 2.20 0.66
AMD8 2.28 0.52 2.28 0.54
AMD9 3.16 5.57 2.09 2.77
AMD10 7.21 19.82 2.15 2.20
AMD11 2.02 0.79 2.03 0.81
AMD12 29.82 531.70 1.97 2.93
AMD13 2.19 1.26 2.17 1.23
AMD14 1.64 2.00 2.08 2.48
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In a typical MNREAD data set, there are usually fewer data
points on the rising slope of the curve than on the asymptote.
Thus, the estimation of the slope in the two-limb function and
the rate of change in the exponential-decay function can be
noisy. Moreover, acuity reduction and inadequate testing time
in clinical settings often result in a sparse MNREAD data set for
individual patients. Our results show that NLME modeling can
be used to estimate reading speed and critical print size in
cases of sparse data as long as there are supporting data from
a group of similar observers. Based on Figures 6 and 7, which
show fitted curves to the incomplete data sets, the fits seem
better when the measured data are on the rising slope than on
the asymptote. For instance, in Figure 6, only four data points
resulted in reasonable curve fits for the S9 and S32 data sets.
Thus, from the perspective of data analysis and parameter
estimation, it would be beneficial to measure reading speed
starting from small print near the reading acuity limit and
proceed to larger print sizes, gathering points on the rising part
of the reading speed curve.

Our results indicate that NLME modeling may prove useful
in clinical data sets in which individual data are noisy or
incomplete. In such cases, NLME parameter estimates may
have higher prediction accuracy than the parameters estimated
from individual curve fitting. Further verification of the bene-
fits of NLME modeling with larger MNREAD data sets among
different kinds of patients is needed. Our preliminary analysis
of MNREAD data from 341 older persons with and without
cataract shows promising results (Kallie CS. IOVS 2005;46:
ARVO E-Abstract 4589). In its current form, NLME modeling
may not be easily accessible to many clinical practitioners.
However, it is possible to make NLME modeling through a Web
page interface. A Web-based version of the statistical software
used is available (http://rweb.stat.umn.edu/Rweb/), which
means model fitting can be performed on any regular com-
puter with Web access.

CONCLUSIONS

NLME models use the information from population estimates
and provide good fits to individual data sets. This approach can
also be used to compare response curves, either for different

experimental conditions in the same observer37 or for different
observers from different populations and different patient
groups (Kallie CS. IOVS 2005;46:ARVO E-Abstract 4589), in
psychophysical studies.

We have shown that (1) the exponential-decay function is
better than the two-limb function for fitting MNREAD data, (2)
NLME models can be a useful method of analyzing grouped
reading speed versus print size data, and (3) the predicted set
of parameters for each observer from NLME modeling predicts
the data reasonably well, even for incomplete data sets. The
last point is important for clinical MNREAD data, which is often
incomplete because of acuity reduction or testing time limita-
tions. Our demonstration of the merits of NLME modeling for
MNREAD data indicates the potential value of NLME modeling
for other types of clinical vision testing.

APPENDIX

Nonlinear Mixed-Effects Models of Reading
Speed Data

The NLME models are specified as follows5,6:

yij � f�xij,�i) � 	ij,	ij � N�0,
2�, i � 1,. . .,n, j � 1,. . .,mi

where yij is the reading speed in logWPM at the jth print size
xij, f(xij, �i) and is either the two-limb function or the expo-
nential-decay function with parameter vector �i for the ith
observer. 	ij is the residual error, which follows the normal
distribution with mean zero and variance 
2. The parameter
vector �i determines the reading speed curve for each ob-
server, and is modeled as:

�i 	 � � bi,bi � N(0,�)

where � is the mean parameter vector and bi is the vector
for the random effects for the ith observer. bi is normally
distributed with a zero mean vector and variance-covariance
matrix �.

More sophisticated models of the parameter vector �i can
be formulated by replacing the mean parameter vector � with
any fixed-effect structure of interest and the random-effect
vector bi with the corresponding more complex random-effect
structure. In our first analysis, we had fixed effects of contrast
polarity and random effects of both contrast polarity and indi-
vidual variations. The same model was also fitted to the trun-
cated data sets. Another NLME model with a mean parameter
vector and random effects of individual variations was used to
analyze the data sets from our patients with AMD. After fitting
an NLME model, the parameter vector �i for each observer
was estimated with best linear unbiased predictor, or
BLUP.38,39

Model-Fitting Implementation

All data analyses were implemented in R (http://www.r-project.
org/)40 with the NLME library.7 The Nelder-Mead simplex algo-
rithm41 was used to find the parameter combinations that mini-
mize the residual sum of squares in individual curve fitting. R
scripts for fitting NLME models to our data sets are available for
download at http://vision.psych.umn.edu/�gellab/mnread/.
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TABLE 3. Estimated Critical Print Size for Reading (CPSED) and Its
Corresponding Reading Speed (80% of MRS) from NLME Modeling
and Suggested Print Size Using the Fixed-Acuity-Reserve Method
(PSreserve) and Its Corresponding Reading Speed (Predicted from the
Fitted Curve) for Each of the 14 AMD Patients

NLME Modeling
Fixed-Acuity-Reserve

Method

CPSED

(logMAR)

Reading
Speed

(logWPM)
PSreserve

(logMAR)

Reading
Speed

(logWPM)

AMD1 0.54 1.98 0.68 2.06
AMD2 1.18 2.16 0.93 2.00
AMD3 0.32 1.61 0.58 1.71
AMD4 1.43 2.26 1.13 2.04
AMD5 0.75 2.00 0.72 1.98
AMD6 2.09 2.07 1.52 1.74
AMD7 0.66 2.10 0.40 1.95
AMD8 0.54 2.18 0.60 2.22
AMD9 2.77 2.00 1.36 1.40
AMD10 2.20 2.05 1.22 1.61
AMD11 0.81 1.94 0.68 1.85
AMD12 2.93 1.88 1.42 1.46
AMD13 1.23 2.07 0.92 1.86
AMD14 2.48 1.98 1.71 1.46
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