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Abstract

Purpose: Visual-span profiles are plots of letter-recognition accuracy as a function of letter position left and right of the point of fix-
ation. Legge, Mansfield, and Chung [Legge, G. E., Mansfield, J. S., & Chung, S. T. L. (2001). Psychophysics of reading—XX. Linking
letter recognition to reading speed in central and peripheral vision. Vision Research, 41(6), 725–743] proposed that reduced size of the
visual span is a spatial factor limiting reading speed in patients with age-related macular degeneration (AMD). We have recently shown
that a temporal property of letter recognition—the exposure time required for a high level of accuracy—is also a factor limiting reading
speed in AMD [Cheong, A. M. Y., Legge, G. E., Lawrence, M. G., Cheung, S. H., & Ruff, M. (2007). Relationship between slow visual
processing and reading speed in people with macular degeneration. Vision Research, 47, 2943–2965]. We measured the visual-span pro-
files of AMD subjects and assessed the relationship of the spatial and temporal properties of these profiles to reading speed.

Methods: Thirteen AMD subjects and 11 age-matched normals were tested. Visual-span profiles were measured by using the trigram
letter-recognition method described by Legge et al. (2001). Each individual’s temporal threshold for letter recognition (80% accuracy
criterion) was used as the exposure time for measuring the visual-span profile. Size of the visual span was computed as the area under
the profile in bits of information transmitted. The information transfer rate in bits per second was defined as the visual-span size in bits
divided by the exposure time in sec.

Results: AMD visual-span sizes were substantially smaller (median of 23.9 bits) than normal visual-span sizes in central vision (med-
ian of 40.8 bits, p < .01). For the nine AMD subjects with eccentric fixation, the visual-span sizes (median of 20.6 bits) were also signif-
icantly smaller than visual spans of normal controls at 10� below fixation in peripheral vision (median of 29.0 bits, p = .01). Information
transfer rate for the AMD subjects (median of 29.5 bits/s) was significantly slower than that for the age-matched normals at both central
and peripheral vision (median of 411.7 and 290.5 bits/s respectively, ps < .01). Information transfer rates were more strongly correlated
with reading speed than the size of the visual span, and explained 36% of the variance in AMD reading speed.

Conclusion: Both visual-span size and information transfer rate were significantly impaired in the AMD subjects compared with age-
matched normals. Information transfer rate, representing the combined effects of a reduced visual span and slower temporal processing
of letters, was a better predictor of reading speed in AMD subjects than was the size of the visual span.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In developed countries, age-related macular degenera-
tion (AMD) is the leading cause of central vision loss
among people aged 50 years and over. Central field loss
(CFL) is often a consequence of AMD and causes reading
difficulty. Seeking assistance to alleviate reading problems
is the major goal for the majority of AMD patients
attending low vision clinics (Elliott et al., 1997). Despite
appropriate magnifying aids prescribed to compensate
for acuity loss, many AMD patients still read very slowly
(Legge, Ross, Isenberg, & LaMay, 1992; Legge, Rubin,
Pelli, & Schleske, 1985b; Whittaker & Lovie-Kitchin,
1993). This suggests that there are underlying factors
other than acuity limiting reading performance in AMD
subjects.

As a consequence of CFL, AMD patients typically use a
region of para-central retina for reading, usually within 20�
from the damaged fovea. The eccentric location that func-
tions as the fixation reference is commonly termed the pre-
ferred retinal locus (PRL) (Timberlake et al., 1986). In this
paper, ‘‘peripheral retina” and ‘‘peripheral vision” refer to
this paracentral region, consistent with usage in related lit-
erature (e.g. Chung, Mansfield, & Legge, 1998; Higgins,
Arditi, & Knoblauch, 1996; Latham & Whittaker, 1996;
Legge et al., 2007a). A number of factors have been sug-
gested to explain the reduced reading speed in AMD
patients. These factors include impaired oculomotor con-
trol (McMahon, Hansen, & Viana, 1991; Rubin & Turano,
1994; White & Bedell, 1990; Whittaker, Cummings, &
Swieson, 1991), poor fixation stability (Crossland, Culham,
& Rubin, 2004; Whittaker, Budd, & Cummings, 1988),
shrinkage of the visual span (Legge, Ahn, Klitz, & Lueb-
ker, 1997; Legge et al., 2007b; Legge, Mansfield, & Chung,
2001), and slower temporal processing of letter information
(Cheong, Legge, Lawrence, Cheung, & Ruff, 2007). In this
paper, we focus on both the spatial and temporal influences
on letter recognition in AMD.

Visual span is defined as ‘‘the number of letters that can

be recognized reliably without moving the eyes” (Legge,
2007, Chapter 3). Legge and colleagues have proposed that
the visual span imposes a sensory bottleneck on reading
speed (Legge et al., 1997), and that a ‘‘shrinking” visual
span limits reading performance in low vision (Legge
et al., 2001, 2007b). Visual-span profiles are plots of let-
ter-recognition accuracy as a function of distance left and
right of the point of fixation. The profiles characterize the
visual information available for letter recognition and
reading (Legge et al., 2001). For the case of normal central
vision, the profiles are centered on the fovea. For people
with AMD and stable PRLs, the profiles are centered on
the PRL. Legge et al. (2001) found that visual-span size
is reduced significantly in normal peripheral vision and
these smaller visual spans are associated with slower
peripheral reading. This finding led them to hypothesize
that AMD patients who must use their non-foveal vision
for reading, would have reduced visual spans. The smaller
visual spans are expected to result in slower reading in
AMD patients (Legge et al., 1997, 2001).

Legge et al. hypothesis was indirectly supported by eye-
movement studies conducted by Bullimore and Bailey
(1995) and by Crossland and Rubin (2006). Consistent with
the reduced visual-span hypothesis, these eye-movement
studies showed that saccade size was substantially reduced
in subjects with macular degeneration compared with age-
matched healthy readers.

We now turn to temporal processing. Legge et al. (2001)
studied the temporal dependence of the visual span by mea-
suring visual-span profiles for a range of exposure times
from 25 to 500 ms in normal central and peripheral vision.
The visual spans increased in size as exposure time
increased up to some limit. In central vision, the visual
spans reached their peak amplitudes and breadths in
100 ms or less. In peripheral vision, longer exposure times
(e.g. 200 ms at 20� inferior field) were required for visual
spans to reach their maximum size. Because AMD subjects
with central-field loss rely on their peripheral vision, we
would also expect them to require longer exposure times
to achieve the maximum spatial extent of their visual spans.

In a recent paper, we have reported that the temporal
thresholds for letter recognition in AMD subjects are sub-
stantially longer than in normal peripheral vision (Cheong
et al., 2007). Reasons for this slower processing of letter
information by AMD subjects may include concomitant
pathology, fixation instability, and/or crowding (refer to
Cheong et al., 2007 for detailed discussion). Whatever the
cause, it is likely that the temporal characteristics of test
stimuli will have a greater impact on AMD visual-span
profiles than on normal visual-span profiles. Because of
the wide variation in temporal dependency of letter recog-
nition across our AMD subjects, we measured visual-span
profiles for each subject at his/her ‘‘temporal threshold”, the
exposure time yielding 80% correct for recognizing letters
at fixation. We did this instead of measuring visual-span
profiles at a single, short exposure time (as we have typi-
cally done with normally sighted subjects). This strategy
brings to the forefront the temporal, as well as spatial,
characteristics of visual spans.

A priori, it seems likely that reading speed would be
affected by both spatial and temporal characteristics of
the visual span. In order to capture both of these attributes
in a single measure, we define the rate of information trans-
fer through the visual span as the visual-span size in bits
divided by the exposure time in sec. This quantity takes
into account both the spatial extent of the visual span
and the time course of processing in the corresponding
region of the visual field. We investigated the association
of this measure with AMD reading speed.

As a secondary goal, we asked how nearby scotomas
would affect the shape of visual-span profiles. The profiles
of AMD subjects are expected to be centered at their PRLs.
Research has shown that the majority of PRLs in AMD
are located below and/or to the left of central-field scoto-
mas (Fletcher & Schuchard, 1997; Fletcher, Schuchard, &
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Livingstone, 1994; Schuchard, Naseer, & de Castro, 1999;
Sunness, Applegate, Haselwood, & Rubin, 1996). See Che-
ung and Legge (2005) for a review of hypotheses for loca-
tions of PRL development. If a visual-span profile,
centered on the PRL, extends into a nearby scotoma, we
would expect to find a depression in the profile. We looked
for these distortions of the visual-span profiles and
attempted to predict their occurrence from the presence
of scotomas measured with conventional perimetry.

To summarize, in this study, we explored four hypotheses:
(1) AMD subjects with central-field loss have smaller visual
spans than age-matched normal controls; (2) shrinkage in
the size of the visual span, a purely spatial limitation, is an
important contributor to reduced reading speed in AMD;
(3) reduction in the information transfer rate, combining
influences of slower temporal processing and reduced size
of the visual span, is more closely associated with slow read-
ing in AMD; and (4) the distortions of visual-span profiles
reflect the presence of scotomas adjacent to the PRL.

2. Methods

2.1. Subjects

Thirteen subjects with a primary ocular diagnosis of AMD and age
range from 65 to 87 years (mean 78.7 ± 5.5) were recruited from the
Low Vision Center of the University of Minnesota and Vision Loss
Resources (Minneapolis, MN). Data on temporal thresholds for letter rec-
ognition for 12 of these subjects were discussed in detail by Cheong et al.
(2007). All AMD subjects had functional reading vision (P40 wpm for
spot reading skill) and distance acuity of 20/400 (1.3 logMAR) or better,
but reported difficulties in reading. We excluded AMD patients with more
severe reading or acuity deficits in order (1) to study subjects who continue
to read visually; (2) so that RSVP reading words, magnified to exceed the
critical print size, would fit on the display screen; and (3) so that the PRL
would be within ±10� from the fovea.

Eleven age-matched normal subjects1 with normal vision (NV) partic-
ipated in the study (mean age of 74.6 ± 4.9 years). They had visual acuities
of 20/25 or better and no reported ocular disease. Prior to the testing, a
brief retinal assessment with direct ophthalmoscope was performed for
each NV subject to confirm their vision status. Potential subjects with cog-
nitive and neurological limitations (e.g. Parkinson’s and Alzheimer’s dis-
eases) were excluded from the study. Cognitive status was screened by
the Mini-Mental State Exam (MMSE) (Folstein, Folstein, & McHugh,
1975) and only subjects within the normal range of MMSE score (P25)
(Launer, Dinkgreve, Jonker, Hooijer, & Lindeboom, 1993) were recruited.
All subjects were fluent English speakers and gave signed, informed con-
sent to their participation in the study. This study followed the tenets of
the Declaration of Helsinki and was approved by the University of Min-
nesota Institutional Review Board.

2.2. Apparatus and stimuli

Stimuli for the rapid serial visual presentation (RSVP) reading task
and the measurement of visual-span profiles were generated and presented
on a Power Mac G4 (model: M8570) with a SONY Trinitron display
(model: GDM-FW900; refresh rate: 76 Hz) using Matlab 5.2.1 with the
1 Data for six age-matched NV subjects were available from another
study in our laboratory. The visual-span profiles from these subjects were
combined with five newly recruited subjects to form the age-matched
control group. These subjects self-reported having no ocular diseases or
cognitive problems.
Psychophysics Toolbox extensions. All stimulus letters were rendered in
lowercase Courier font and presented as black letters on a white back-
ground with contrast of 90%, and background luminance of 100 cd/m2

in the reading task and 90 cd/m2 in the letter-recognition task. Standard
letter spacing, in which center-to-center separation of adjacent letters
was 1.39 times the height of the lower case x, was used and scaled accord-
ing to the print size. Angular print size is designated by x-height in
degrees.

2.3. Procedure
2.3.1. Vision assessments

Except as indicated below for the tangent-field measurements, all
vision testing was conducted binocularly. Distance visual acuity with cur-
rent spectacle prescription was measured with a Lighthouse Distance acu-
ity chart with background luminance of 120 cd/m2 and scored on a per-
letter basis in logMAR (Kitchin & Bailey, 1981). Maximum reading speed
and critical print size (CPS), the smallest print size yielding maximum
reading speed, were measured with the MNREAD chart (Mansfield,
Ahn, Legge, & Leubker, 1993) with background luminance of 95 cd/m2

and with the appropriate refractive correction. The CPS estimated from
the MNREAD Acuity Chart was used to guide selection of the print sizes
to be used in RSVP testing (see below). Letter contrast sensitivity was
measured using the Pelli Robson chart at 1 m, scored on a per-letter basis
and expressed as log contrast sensitivity (Elliott, Bullimore, & Bailey,
1991; Pelli, Robson, & Wilkins, 1988). Monocular central visual fields2

were measured using a 5-mm white target on a tangent screen at 1 m with
average background luminance of 80 cd/m2 (Henson, 1993). This method
for field measurement is recommended by Lovie-Kitchin and Whittaker
(1998) for obtaining a rough estimate of the size and location of the sco-
toma relative to the PRL. The AMD subjects were instructed to direct
their gaze (central or eccentric) to a large fixation target—a letter E (20/
150 or 20/300) (Lovie-Kitchin, Bowers, & Woods, 2000; Lovie-Kitchin
& Whittaker, 1998). During the field measurement, subjects were con-
stantly reminded to maintain their fixation on the E and asked to report
when the 5 mm white target (moving at a speed of 5� per second) was miss-
ing (refer to Fig. 2). Monocular central visual field loss was quantified by
the width and height of the scotoma in degrees of visual angle and by solid
angle in steradians (Lovie-Kitchin, Mainstone, Robinson, & Brown, 1990;
Weleber & Tobler, 1986) and categorized into four quadrants: superior,
inferior, left and right, according to the location relative to fixation. The
shift of the physiological blind spot in the better-eye (i.e. eye with better
distance acuity) was used to estimate the PRL location. Three of the 13
AMD subjects had no scotoma for the 5 mm target and are classified as
having ‘‘no scotoma”. Table 1 summarizes the subjects’ characteristics
and clinical vision measures.

To better reflect the subjects’ habitual reading performance, reading
and visual-span measures were assessed binocularly with the appropriate
near refractive correction at 40 cm (or a fixed shorter distance if required
by the subject’s poorer acuity).

2.3.2. Visual-span measures

2.3.2.1. Temporal thresholds. Individual temporal thresholds for letter rec-
ognition at fixation were measured for the AMD subjects. A trigram
method was used, comparable in most details to the method for measuring
visual-span profiles (see below), except that all stimuli were centered at the
subject’s point of fixation, and stimulus exposure time was varied, rather
than stimulus position. For details, see Cheong et al. (2007). The data were
plotted as psychometric functions—percent correct for the central letter of
the trigram as a function of exposure time—and were fit with cumulative
Gaussian functions. The exposure time yielding 80% correct was defined as
the temporal threshold for the subject. An individual’s temporal threshold
2 The monocular field of the poorer eye and the binocular tangent fields
were also measured but are not reported in Fig. 3.



Table 1
Summary of vision measures

Subject Group Age Length of
impairment
(years)

Distance VA
(logMAR)

Log contrast
sensitivity

Monocular scotoma Estimated PRL
(in visual field)(Diameter) (Quadrant)a

1 AMD 81 4 0.24 1.10 15� � 9� R,L,S,I Left 5� and lower 10�
2 AMD 76 2 0.58 1.65 — — Central
3 AMD 74 3 0.44 1.25 6� � 4� L,S,I Central
5 AMD 77 5 0.26 1.45 7� � 10� L,I Upper 3�
7 AMD 65 3 0.12 1.90 — — Central
8 AMD 81 4 0.20 1.30 — — Central
9 AMD 79 3 0.70 0.85 18� � 18� R,L,S,I Right 10� and lower 10�
10 AMD 87 8 0.76 1.35 8.4� � 9� R,S,I Left 5�
11 AMD 78 5 0.32 1.10 2.5 � 1� L,I Left 5�
12 AMD 79 10 0.88 1.40 15� � 25� R,S,I Leftb

14 AMD 81 11 1.12 0.95 18� � 21� R,L,S,I Left 10�
15 AMD 83 5 0.38 1.40 10� � 15� L,S,I Right 3�
16 AMD 85 7.5 1.00 1.40 18� � 15� R,L,S Left and lower 12�
17 NV 68 — �0.10 2.00 — — —
18 NV 81 — 0.02 1.95 — — —
19 NV 82 — 0.04 1.85 — — —
20 NV 78 — �0.12 1.85 — — —
21 NV 66 — �0.04 1.85 — — —
22 NV 75 — 0.08 1.90 — — —
23 NV 73 — �0.18 1.95 — — —
24 NV 75 — �0.10 1.90 — — —
25 NV 76 — �0.12 1.90 — — —
26 NV 72 — �0.12 1.85 — — —
27 NV 75 — �0.12 1.85 — — —

Mean (SD) AMD 78.9 (5.5) 5.42 (2.84) 0.54 (0.33) 1.32 (0.28) — — —
NV 74.6 (4.9) — 0.07 (0.08) 1.90 (0.05) — —

p-Value 0.10 — <0.001 <0.001 — —

AMD = age-related macular degeneration, NV = normal vision.
a Qualitative categorization of visual field loss: Right (R) bounded by 315� and 45�; Left (L) bounded by 135� and 225�; Superior (S) bounded by 45� and

135�; Inferior (I) bounded by 225� and 315�.
b The extent of the PRL could not be estimated for Sub 12 because no physiological blind was mapped due to large right scotoma.
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(see Table 2) was used as the stimulus duration in measuring the visual-
span profile unless the threshold was shorter than 100 ms, in which case
100 ms was used as the stimulus duration (Sub 7 and the normal controls).

2.3.2.2. Visual-span profiles. Visual-span profiles were measured by pre-
senting trigrams (strings of three horizontally arranged letters, randomly
selected from the 26 lowercase letters) with middle-letter positions from
�6 to +6 (Fig. 1). A visual-span profile was measured for a single letter
size approximately twice the CPS3 for each AMD subject. The CPS was
estimated from the RSVP reading assessment (see below), and ranged
from 0.34� to 4.18� across subjects (mean of 1.8 ± 1.5�). In previous stud-
ies, we have fit visual-span profiles with asymmetric Gaussian functions
(cf., (Legge et al., 2001). Due to the presence of central scotomas, some
AMD visual-span profiles had distortions and could not be fit with this
function. Instead, we connected the data points by line segments in Figs.
2 and 3.

During testing, subjects were instructed to fixate between two vertically
separated green dots on the display screen (Fig. 1). The separation of the
dots ensured that they did not overlap with letters presented at the 0 posi-
tion. For 9 AMD subjects with an eccentric PRL, it was expected that fix-
ation would be at the PRL. For the NV subjects and four AMD subjects,
3 Reading speed for Sub 3 was compromised at small and large character
sizes due to a ring scotoma. The print size which yielded the fastest reading
speed in RSVP was adopted as the letter size for temporal threshold and
visual span measures.
it was expected that fixation was foveal. Fixation stability for the AMD
subjects was monitored with a method similar to Seiple, Holopigian,
Shnayder, and Szlyk (2001) using a Logitech QuickCam� Pro 5000 (image
capture and recording of 640 � 480 pixel images at a frame rate of 30 Hz).
Measurements with NV subjects showed that saccades of 1�, 2�, and 3�
resulted in 0.30, 0.50, and 0.70 cm physical movement on the monitor,
respectively. A second experimenter could reliably detect 2� saccades,
and less reliably 1� saccades. Trials were rejected when movement of the
pupil’s image during a trial was observed (estimated accuracy of 2� or bet-
ter). This sensitivity is sufficient to reject most trials with eye movements of
one letter or more within a trial (average character size was 1.8 ± 1.5�
across AMD subjects). In this study, the trial exclusion rate was
19.0 ± 12% (range from 2.7% to 51.2% across AMD subjects).

Subjects reported aloud all 3 letters of the trigram from left to right
and the experimenter typed the letters into the computer. A letter was
counted as correct only if it was identified correctly in the correct order.
Recognition accuracy (proportion correct) at each letter position was cal-
culated by accumulating across trials in which the letters appeared in the
three different positions within the trigram. Each visual-span measure was
based on data from 25 trigrams at each of 13 locations (�6 to +6).

Based on the letter-confusion matrices measured by Beckmann and
Legge (2002), percent correct recognition for each letter position was con-
verted to information transmitted, in which 100% accuracy at recognizing
one of the 26 letters corresponds to transmission of log2(26) or 4.7 bits of
information while the chance level of 3.8% accuracy corresponds to trans-
mission of log2(1) or 0 bits (Legge et al., 2001). The approximately linear
transformation from proportion correct to bits of information transmitted



Table 2
Summary of visual span and reading measures

Subject Group Stimuli print
size (�)

Visual span Reading

Exposure
duration (ms)a

Size
(bits)

Information
transfer rate (bits/s)

Reading speed
(log wpm)

Reading acuity
(logMAR)

1 AMD 0.84 554.4 16.36 29.52 2.26 0.38
2 AMD 1.85 396.1 36.67 92.57 1.90 0.63
3 AMD 0.42 686.5 12.50 18.20 1.71 0.28
5 AMD 0.66 369.7 27.08 73.24 2.30 0.42
7 AMD 0.34 100.0 40.62 406.18 2.46 0.10
8 AMD 0.58 422.5 30.52 72.15 2.44 0.30
9 AMD 4.18 1293.8 30.58 23.64 1.75 1.06
10 AMD 1.66 818.5 23.91 29.21 1.75 0.92
11 AMD 0.84 792.1 20.58 25.99 2.09 0.38
12 AMD 3.32 1755.7 19.42 11.06 1.86 1.12
14 AMD 4.18 2033.0 18.99 9.34 1.92 1.41
15 AMD 0.84 100 18.67 180.67 2.40 0.34
16 AMD 3.59 409.2 27.03 66.05 2.34 1.04
17b NV 3.5 100 29.31 293.15 1.92 �0.08
18b NV 3.5 100 24.25 242.49 1.72 0.06
19b NV 3.5 100 — — — �0.05
20b NV 3.5 100 27.16 271.61 1.37 �0.13
21b NV 3.5 100 30.21 302.07 1.54 0.01
22 NV 3.5 100 32.54 325.44 1.89 0.14
23 NV 3.5 100 26.39 263.89 2.33 �0.12
24 NV 3.5 100 24.76 247.55 1.95 �0.10
25 NV 3.5 100 32.02 320.23 2.42 0.04
26 NV 3.5 100 28.84 288.35 2.22 �0.10
27 NV 3.5 100 29.26 292.59 2.23 �0.12

Mean (SD) AMD 1.80(1.48�) 764.0(594.2) 24.8(8.2) 79.8(108.7) 2.09(0.29) 0.65(0.41)

NV 3.5� 100 28.5(2.8) 284.7(28.2) 1.96(0.35) �0.03(0.09)
p-Value — — .20 <.01 .43 <.01

AMD = age-related macular degeneration, NV = normal vision.
RSVP reading speed for AMD subjects reflected their reading performance at either their central or preferred retinal location while RSVP reading speed
for NV subjects reflected their reading performance at 10� inferior visual field.
For Sub 19, reading speed at 10� inferior vision was not measured because this subject quitted the study due to exhaustion.

a Letter recognition accuracy for the central letter position as a function of exposure durations was measured for each AMD subject. The exposure time
yielding 80% correct was defined as the temporal threshold. For subjects whose temporal threshold was longer than 100 ms, the individual’s temporal
threshold was used as the stimulus duration in measuring the visual-span profile; otherwise, 100 ms was used (e.g. Sub 7 and NV).

b Among these NV subjects, visual-span profiles and reading were measured at both central and 10� inferior visual field. Only results on 10� inferior
visual field were reported in this table.
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is shown on the right vertical axis of the visual-span profile (Fig. 1). Size of
the visual span is computed as the sum of the information transmitted by
letter positions from �5 to +5 of the profile.

For each NV subject, a visual-span profile was measured at 10� in the
lower visual field, centered on the midline. The letter size was 3.5� and the
exposure time was 100 ms. This print size was adopted because it was
approximately twice the CPS in peripheral vision for NV subjects mea-
sured in previous studies (Cheung, 2005; Chung, Legge, & Cheung,
2004). In addition, for five of the 11 NV subjects, we measured visual-span
profiles in central vision for print sizes of 0.5�, 1�, 2�, and 4�. This range is
approximately matched to the range of print sizes used by the AMD sub-
jects. Asymmetric Gaussian functions (Legge et al., 2001) were fitted to the
NV profiles.
2.3.2.3. Superposition of scotomas on AMD visual-span profiles. In order to
evaluate the impact of scotomas on visual-span profiles, we needed a
method to superimpose scotoma regions from a tangent field on letter
positions in a visual-span profile. Tangent field maps were superimposed
on visual-span profiles with the assumption that the PRL used for
visual-span measurements was the same as the PRL used for tangent-field
measurements. For example, Sub 10, who had a large monocular scotoma
to the right of the PRL (refer to Section 2.3.1 for the estimation of PRL)
from approximately 3.5� to 10.5�, was tested with 1.66� letters in the tri-
gram test. Letters with an x-height of 1.66� have a center-to-center spacing
1.39 times greater than this value for the Courier font, i.e. a center-to-cen-
ter spacing of 2.3�. The letter in slot zero extended half a letter to the right
and half to the left. A letter in slot 1 of the profile would lie between 1.16�
and 3.47� from fixation, and a letter in slot 6 would lie between 12.7� and
15.0� from fixation. The visual-span profile, extending from letter position
�6 to +6, corresponds to an angular extent on the tangent field from 15.0�
left to 15.0� right of the fixation point (Fig. 2). From this superposition,
letter positions of +2 to +5 in the visual-span profile would entirely over-
lap with the scotoma position in the field map and would be expected to
exhibit reduced performance. Letter positions +1 and +6 would partially
overlap with the scotoma. The gray bars on the visual-field profiles in
Fig. 3 mark the estimated locations of scotomas based on this superposi-
tion method.
2.3.3. Reading assessments

RSVP reading speed was measured with the appropriate near refrac-
tive correction at 40 cm (or a fixed shorter distance if required by the sub-
ject’s lower acuity) over a range of print sizes. Each RSVP sentence was
randomly selected from a pool of 2658 sentences prepared by Chung
et al. (1998). Each sentence contained 8–14 words (mean of 11 ± 1.7 words



Fig. 1. Measurement of visual-span profiles: trigrams (strings of 3-letters)
for measuring the visual span were presented at various positions left or
right of fixation. Subjects were instructed to use either their preferred
retinal locus (for AMD subjects with central scotomas) or central vision
(for AMD subjects without scotomas or normal vision subjects) to fixate
the mid point between two vertically separated green fixation dots (shown
as grey dots in this figure). Subjects reported aloud all 3 letters of the
trigram from left to right. The lower panel shows a sample visual-span
profile in which proportion correct (left vertical scale) is plotted as a
function of letter position for a normally sighted subject. The right vertical
scale shows an approximately linear transformation from percent correct
to information transmitted in bits, where 100% correct for identifying 1 of
26 letters corresponds to 4.7 bits of information. The size of the visual
span was quantified by summing across the information transmitted in
each slot (from letter position �5 to +5).

Fig. 2. Illustration of the method for estimating monocular scotoma
position (measured for the higher-acuity eye) within a visual-span profile
(measured under binocular viewing). A large scotoma extending from 3.5�
to 10.5� horizontally from the AMD subject’s point of fixation (PRL) is
superimposed on the subject’s visual-span profile. The scotoma overlaps
letter positions from +2 to +5 in the visual-span profile for characters with
x-height of 1.66�. Gray bars in Fig. 3 illustrate the positions of scotomas
computed in this way.
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and a mean word length of 3.94 letters) and contained no punctuation
other than a period. Individual words of a sentence were presented sequen-
tially, left-justified at the same location on a monitor for fixed exposure
durations. Subjects were required to read the sentence aloud and the
experimenter recorded the number of words read correctly. A word was
scored as correct when the subject spoke the word correctly, irrespective
of the order in the sentence. A detailed description of the method for mea-
suring RSVP reading speed as a function of print size is given by Cheong
et al. (2007). In brief, reading speed in which RSVP exposure time yielded
80% of words identified correctly was measured for a minimum of 5 print
sizes. A multilevel non-linear mixed effects model (NLME) (Pinheiro &
Bates, 2000) was then used to estimate the parameters of an exponential
fit to the data yielding maximum reading speed and critical print size
(CPS) for the AMD subjects (Cheung, Kallie, Legge, & Cheong, in press).
CPS was defined as the smallest print size yielding 80% of the maximum
reading speed.

For the NV subjects, peripheral RSVP reading speed was tested for
3.5� characters at 10� in the lower visual field. In addition, RSVP reading
speed was tested across a range of print sizes in central vision in five of the
11 NV subjects.

2.4. Data analysis

SPSS (version 15), Matlab (version 7) including the psignifit toolbox
(version 2.5.6), and R (version 2.1.0) were used in the data analyses. Given
that our sample size was relatively small, non-parametric statistics without
the assumption of data normality was used to examine the differences in
visual-span parameters and reading measures in the AMD and NV
groups. Spearman correlation was used to investigate the relationship
among reading speed, visual span and (temporal and spatial components;
information transfer rate) the location of scotomas. A probability of less
than 0.05 was taken to indicate statistical significance.
3. Results

3.1. Size of visual-span profiles in normal vision and AMD

Fig. 3 shows individual visual-span profiles for 13 AMD
subjects (data points connected by line segments). The dark
solid curves show average visual-span profiles for normal
central vision at a print size close to the value used for
the individual AMD subject. The gray dashed curves show
average visual-span profiles in normal peripheral vision
(10� in the lower visual field with print size of 3.5�). The
gray bars show the estimated locations of scotomas (see
Section 2). Table 2 contains visual-span sizes, information
transfer rates, reading speeds and testing parameters for
individual subjects.

Group comparisons are summarized in Table 3 and
Fig. 4. Results are shown for the AMD group as a whole,
and also broken down into subgroups with central (N = 4)
and eccentric (N = 9) fixation. The nine subjects with
eccentric fixation used PRLs which ranged from approxi-
mately 3� to 12� away from the fovea (Table 1). The four



Fig. 3. Each panel shows the visual-span profile for an AMD subject (data points are connected by line segments). The dark solid curves show average
visual-span profiles for normal central vision at a print size close to the value used for the individual AMD subject. The dashed curves show average visual-
span profiles in normal peripheral vision (10� in the lower visual field with print size of 3.5�). The gray bars show the estimated locations of scotomas. Sub
2, 7, and 8 showed no scotoma whereas Sub 16 adopted an inferior-left PRL by shifting the scotoma to her upper visual field, resulting in no scotoma lying
along the horizontal meridian where the visual span was measured. Eccentricity of the point of fixation (foveal or PRL) and character size used to measure
visual span is shown for each individual subject.
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subjects with central fixation included three with no scoto-
mas as measured on the tangent screen, and Sub 3 who had
a ring scotoma with intact central vision.

First, we compared the whole group of AMD visual
spans with age-matched visual spans in normal central
and peripheral vision. As predicted, the overall AMD
group had visual spans that were significantly smaller than
NV visual spans when the latter were measured in central
vision (median of 23.9 vs. 40.8 bits, Mann–Whitney test,
U = 2.0, p = .001, Fig. 4a). However, AMD visual-span
sizes were not significantly different from NV visual-span
sizes when the latter were measured at 10� in the lower
visual field (median of 23.9 vs. 29.0 bits, p = .17).

Second, separate analyses of visual-span sizes for the
AMD subjects with different locations of fixation (central
or eccentric) were compared with the corresponding fixa-
tion locations for the NV subjects (central or peripheral).
Visual-span sizes for the AMD subjects with central fixa-
tion (n = 4) were marginally smaller than the sizes in nor-
mal central vision (median of 33.6 vs. 40.8 bits, p = .06).
The visual-span sizes for the AMD subjects with eccentric
PRLs (n = 9) were significantly smaller than the normal
peripheral visual spans (median of 20.6 vs. 29.0 bits,
p = .01).

In summary, the visual-span sizes in the AMD subjects
were significantly reduced compared with normal central
vision. Two factors contributing to the smaller visual spans
in AMD are the normal reduction in visual-span size in
peripheral vision, and the impact of nearby scotomas (see
Section 3.5 below).

3.2. Information transfer rate in NV and AMD

Information transfer rate for each subject was computed
by dividing the individual size of the visual span in bits by
the individual’s exposure time in seconds, Fig. 4b). For
example, if the size of the visual span is 20 bits, and it is
measured with an exposure time of 500 ms, the information
transfer rate is 40 bits per sec.

As described in Section 2.3.2.1, AMD visual spans were
measured with stimulus exposure times determined by the
individual’s temporal threshold for letter recognition,
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whereas the NV visual spans were measured with a fixed
exposure time of 100 ms. Because of this procedural differ-
ence, the following comparisons between NV and AMD
information transfer rates should be considered with cau-
tion. The NV values may underestimate maximum infor-
mation transfer rates since 100 ms may exceed NV
temporal thresholds for letter recognition.

Our AMD subjects had a wide range of information
transfer rates from 9.34 to 406.2 bits/s (median of
29.5 bits/s and mean of 79.8 bits/s). These values are signif-
icantly less than the information transfer rates for normal
central vision (median of 407.7 bits/s, U = 2.0, p = .001)
and normal peripheral vision (median of 290.5 bits/s,
U = 10, p = .001). Group comparisons of information
transfer rate for AMD subjects with different locations of
fixation (foveal or eccentric) and for the NV subjects with
corresponding fixation locations (central or peripheral)
are summarized in Table 3.

Although slower information transfer rates were found
in the AMD subjects with eccentric fixation than those with
foveal fixation (median of 29.2 vs. 82.4 bits/s), the differ-
ence was not statistically significant (U = 10, p = .48).
The lack of statistical significance was probably due to
the small sample size in each group and individual variabil-
ity (Table 3).

3.3. Relationship between reading and visual-span measures

in AMD

The median reading speed of our AMD subjects
(2.09 log wpm) was substantially slower than the median
reading speed of age-matched normally sighted controls
reading with central vision (2.52 log wpm; the difference
in the two samples was significant, U = 1.0, p < .001).
The median reading speed for the nine AMD subjects
who used an eccentric PRL was 2.09 log wpm, similar to
the median value of 1.93 log wpm for peripheral reading
(10�) by the eleven age-matched controls (U = 37,
p = .51, Table 3). This near equality is likely to be fortu-
itous, and a consequence of our selection of AMD subjects
with relatively mild impairments. The AMD reading speeds
reported in the present paper were higher than values
reported in many earlier studies, e.g. average values of
1.70 log wpm (Legge et al., 1992, 1985b) and 1.88 log wpm
(Cheong, Lovie-Kitchin, Bowers, & Brown, 2005).

We used nonparametric statistical methods—bootstrap
(Efron, 1979; Efron, 1981) with 10,000 resamplings and
the randomized permutation test (Fisher, 1935) with
10,000 permutations to examine the relationship between:
(1) reading speed and the size of the visual span; (2) reading
speed and temporal threshold; and (3) reading speed and
information transfer rate in the AMD subjects. Contrary
to the hypothesis proposed by Legge et al. (2001), log read-
ing speed did not significantly correlate with visual-span
size (r = .31, pbootstrap > .05 [or 95% BCa inter-
val = (�0.34, 0.76)]). Individual variations in the size of
the visual span explained only 10% of the variance of the



Fig. 4. Box plots for visual-span size (A) and information transfer rate (B). Data are shown for AMD subjects with different fixations: (1) central preferred
retinal locus (PRL) (N = 4); (2) peripheral PRL (N = 9); and (3) the combined group (N = 13), and for age-matched normal controls (NV) tested
with central stimuli (N = 5) and with peripheral stimuli at 10� in the lower visual field (N = 11). * shows the significant comparison with p-value <0.05;
** reflects p-value <0.01
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maximum reading speed in the AMD subjects. In contrast,
log reading speed was significantly correlated with
temporal threshold (r = �0.59, pbootstrap < 0.05 [or 95%
BCa interval = (�0.82, �0.23)]) and information transfer
rate (r = .60, pbootstrap < .05 [or 95% BCa interval =
(0.10, 0.75)]), indicating that the AMD subjects with faster
letter processing speed and faster information transfer rate
read faster. Individual variations in the temporal threshold
and information transfer rate explained 35% and 36% of
the variance of the maximum reading speed in AMD sub-
jects respectively. Excluding the AMD subjects with foveal
fixation, the individual information transfer rate improved
the regression model, accounting for 49% of the variance in
log reading speed.
3.4. Relationship between visual-span profiles and scotomas

in AMD

In Section 2, we described how we superimposed the
visual-span profile on the subject’s tangent-field map. In
most cases, the presence of a scotoma coincided with
depressions in the corresponding regions of the visual-span
profiles, i.e. regions of reduced letter-recognition accuracy.
This can be seen in the profiles for six of the 13 subjects
(Sub 3, 5, 10, 11, 12, and 15) in Fig. 3 in which the gray
bars, representing the estimated location of the scotomas
are coincident with a depression in the profiles. For exam-
ple, the visual-span profile for Sub 3 has depressions at let-
ter positions of �6 to �1 and +3 to +6, corresponding to
the location of a ring scotoma surrounding a spared central
island subtending approximately 2� (with corresponding
letter positions of �1 to +3).

Sub 16 adopted an inferior-left PRL by shifting the sco-
toma to her upper visual field, resulting in no scotoma lying
along the horizontal meridian where the visual span was
measured. However the boundary of this scotoma was just
above the fixation location for trigram testing; the accuracy
of letter recognition was moderately compromised for let-
ter positions of �2 to +2. For Sub 1, the visual-span profile
showed noticeable depressions both left and right of fixa-
tion, but only the depression on the left was associated with
the estimated location of the scotoma. Visual-span profiles
for Sub 9 and 14 were irregular and noisy. As a conse-
quence of poor fixation, a higher proportion of trials was
rejected (24% and 51% for Sub 9 and 14, respectively).
To compensate for the rejected trials, these subjects were
given many additional trials, perhaps resulting in inatten-
tion or fatigue and contributing to the noisiness of the
data.

The foregoing qualitative analysis is consistent with the
idea that letter recognition performance is depressed in
portions of the visual span presumed to be superimposed
on scotomas.
3.5. Relationship between clinical and visual-span measures

in AMD

Visual-span size was only significantly correlated with
scotoma size (in steradians) (Rs = �.62, p = .02), but not
with distance visual acuity or contrast sensitivity
(ps > .05). Similarly, temporal thresholds the AMD sub-
jects was only marginally correlated with reading acuity
(Rs = 0.57, p = 0.05), but not with distance acuity or con-
trast sensitivity (ps > 0.05). In contrast, the slower informa-
tion transfer rate in the AMD subjects was strongly
correlated with vision loss reflected by distance visual acu-
ity (Rs = �.62, p = .03), contrast sensitivity (Rs = .58,
p = .04), and reading acuity (Rs = �.57, p = .04). Consis-
tent with the distribution of PRL locations previously
reported (Fletcher & Schuchard, 1997; Schuchard et al.,
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1999), six of the nine AMD subjects with eccentric fixation
adopted PRLs below (and/or to the left of their scotomas
in the visual field (Table 1). The information transfer rate
in AMD was strongly correlated with scotoma size (in
steradians) (Rs = �.69, p = .009), but it was not correlated
with the coarsely estimated eccentricity of the PRL
(Rs = �.47, p = .12).

4. Discussion

4.1. What are the factors limiting reading speed in AMD?

We began this study with the proposal by Legge et al.
(2001) that reduction in the size of the visual span is a
major factor limiting AMD reading speed, especially for
those who must rely on peripheral vision. Our results
showed significant decreases in the AMD visual spans
and reading speeds, just as in normal peripheral vision.
Contrary to the hypothesis proposed by Legge et al.
(2001), the reduced visual-span size was not strongly corre-
lated with reading speed. Our recent results demonstrating
slower processing of letter information in AMD (Cheong
et al., 2007) led us to consider the combined effects of a
reduced visual span and slower temporal processing. We
defined the information transfer rate for a given subject as
the spatial size of the visual span in bits divided by the
exposure time for letter recognition in sec. We found that
this new variable was a substantially better predictor of
AMD reading speed than visual-span size per se, account-
ing for 36% of the variance in reading speed (or 49%, if
only the subjects with eccentric fixation were considered).

The slower information transfer rate exhibited by the
AMD subjects could not be solely attributed to the normal
decline in rate of information transmission from foveal
vision to 10� peripheral vision. This implies that additional
mechanisms such as concomitant retinal pathology (Cur-
cio, Owsley, & Jackson, 2000), fixation instability (Cross-
land et al., 2004) or crowding (Bouma, 1970; Jacobs,
1979; Latham & Whitaker, 1996; Strasburger, Harvey, &
Rentschler, 1991), must be invoked to explain the slower
information transfer rate in the AMD subjects. Discussion
of these mechanisms can be found in our partner paper
(Cheong et al., 2007).

Although the rate of information transfer is significantly
correlated with AMD reading speed, it accounts for less than
half of the reading-speed variance. What accounts for the
remaining variability? It is certainly possible that our new
variable misses some important aspects of visual dysfunction
in AMD reading. We comment briefly on three other individ-
ual factors potentially contributing to variability. First,
because of acuity differences, our AMD subjects were tested
with character sizes ranging from 0.34� to 4.18�. It is known
that character size influences reading speed over this range
for NV subjects (Legge, Pelli, Rubin, & Schleske, 1985a)
and might well be a source of variability among AMD sub-
jects. Second, AMD subjects frequently reduce the amount
of daily reading depending on the severity of their vision loss,
facility with magnifiers, and motivation to read. It is possible
the variability in reading exposure since the onset of AMD
has an influence on reading speed. Third, even with groups
of normally sighted subjects, there is substantial individual
variability, a major portion of which is probably due to non-
visual factors including individual literacy, cognitive and lin-
guistic skills (Jackson & McClelland, 1975, 1979).
Accordingly, some of the variability in AMD reading speeds
is probably due to differences in reading skill which preceded
the onset of eye disease.

4.2. Clinical implications of slow information transfer rate in

AMD

The definition of information transfer rate highlights the
combined effects of spatial and temporal constraints on
gathering information about letters in reading. This raises
the possibility of a speed-accuracy trade off such that
shorter stimulus durations yield smaller visual spans in bits.
But, depending on the nature of the relationship between
these quantities, the maximum rate of information transfer
could occur for an intermediate or even short stimulus
duration. Determining the stimulus duration that maxi-
mizes the information transfer rate would require measure-
ment of AMD visual spans across a range of exposure
times, rather than at one exposure time per subject as in
the present study. For example, suppose the visual-span
sizes for stimulus durations of 200, 400, and 800 ms were
10, 24, and 28 bits, respectively. The corresponding infor-
mation transfer rates would be 50, 60, and 35 bits/s. In this
example, the maximum information transfer rate occurs for
an intermediate stimulus exposure of 400 ms.

If such tradeoffs occur, do AMD readers naturally
adjust their reading behavior to achieve fixation times that
optimize the information transfer rate? If not, would a
training program aimed at establishing this behavior be
beneficial to AMD reading? A study by Fine and Rubin
(1999) of normally sighted subjects reading with simulated
central scotomas indicates somewhat prolonged fixation
times. But data from subjects with juvenile macular degen-
eration indicate only slightly prolonged fixation times
(Trauzettel-Klosinski, Teschner, Tornow, & Zrenner,
1994), and data from AMD subjects indicate no important
difference from normal fixation times (Bullimore & Bailey,
1995). It remains possible of course, that AMD subjects
maintain normal short fixations in reading through force
of habit, even if prolonged fixations might enhance their
performance. It may seem paradoxical that prolonging
reading fixations might result in faster reading. This could
be the case if the extra fixation time allows for capture of
information from a substantially wider visual span.

4.3. Relationship between AMD visual-span profiles and

location of scotomas

The shapes of some AMD visual-span profiles were dis-
torted from typical visual-span profiles in normal periphe-
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ral vision. In most cases, these distortions were associated
with scotomas at the corresponding location in the visual
field measured by standard perimetry. Despite good corre-
spondence between estimated locations of scotomas and
depressions in the visual-span profiles (Fig. 3), letter recog-
nition in the scotomatous regions did not drop to chance.
Three factors may account for the residual visual function.

First, the scotoma was measured in the better eye on the
tangent screen in order to estimate the location of the PRL,
but the visual-span profile was measured with binocular
viewing. It is possible that some visual input from the
poorer eye might have contributed to the non-zero perfor-
mance within the presumed scotoma region of the visual
span. It is also possible that the AMD subjects used differ-
ent PRLs in the tangent-screen field test than in the visual
span and reading tests. However, we think this possibility is
unlikely given the good correspondence between estimated
locations of scotomas and depressions in the visual-span
profiles (Fig. 3).

Second, scotomas were measured with a 5 mm white tar-
get on a tangent screen. At the viewing distance of 1 m, the
white target subtends 0.28�, compared with test letters
ranging from 0.34� to 4.18� for different AMD subjects in
the visual-span measurements. Because of the differences
in nature and size of the stimuli (dots vs. letters), and task
(dot detection vs. letter recognition), it is possible that the
scotomas measured by the tangent screen would exhibit
different extent or severity in the visual span. For example,
a field region that is incapable of detecting the small tan-
gent-screen test target might retain sufficient function to
perform above chance for large test letters.

Third, it is well known that fixation stability for AMD
subjects is significantly impaired (Crossland et al., 2004;
Culham, Fitzke, Timberlake, & Marshall, 1993; Schuchard
& Fletcher, 1994). Although fixation stability was moni-
tored in this study, the accuracy was such that only sac-
cades larger than 1� could be detected. Fixation
instability might have allowed some test letters, nominally
delivered to the scotomatous region, to be viewed by
healthier retina.

5. Conclusions

People with AMD have substantially smaller visual
spans and exhibit slower temporal processing of letters
than age-matched normally sighted controls. The informa-

tion transfer rate, defined as the ratio of the size of the
visual span in bits to the exposure time in sec for letter rec-
ognition, incorporates these two limitations into a single
information-processing measure. The information transfer
rate is significantly correlated with AMD reading speed
and is a better predictor than the size of the visual span.
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