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Recently, Tjan, Braje, Legge and Kersten 1(1995) Vision Research, 35, 3053-30691 found that human 
efficiency for object recognition was less than 10%, indicating that humans fail to use much of the 
information available to an ideal observer. We examine two explanations for these low efficiencies: 
(1) humans are inefficient in using high spatial-frequency information; and (2) humans are inefficient 
in detecting image samples. We tested the first possibifity by measuring human efficiency for 
recognizing low-pass filtered objects, rendered as fine drawings and silhouettes, in luminance noise. 
Efficiency did not improve when high frequencies were removed, and the first explanation was rejected. 
We tested the second explanation by comparing efficiencies for object detection and recognition. 
Recognition efficiency was higher than detection efficiency for silhouettes but not fine drawings, 
showing that detection efficiency does not place a ceifing on recognition efficiency. The results indicate 
that human vision is designed to extract image features, such as contours, that enhance recognition. 
A computer simulation suggests that this can occur if the observer views the world through a band-pass 
spatial-frequency channel. 

Efficiency Object recognition Object detection Spatial-frequency filtering 

INTRODUCTION 

Efficiency is a measure that compares the performance of 
a human observer to the performance of an ideal 
observer. The "ideal observer" is one that uses all of the 
available information to maximize performance. Re- 
cently, Tjan, Braje, Legge and Kersten (1993) measured 
human efficiency for recognizing simple 3-D objects in 
luminance noise, and found that efficiencies ranged from 
2.7 to 7.8%. These values are low compared to efficien- 
cies obtained in several other complex perceptual tasks: 
25% for judging pattern symmetry (Barlow & Reeves, 
1979), 60% for estimating the mean values of scatter 
plots (Legge, Gu & Luebker, 1989), and 42% for 
recognizing band-pass filtered letters (Parish & Sperling, 
1991). 

The low efficiencies for object recognition indicate that 
people fail to use much of the information available to 
an ideal observer. Tjan et al. (1995) identified three 
factors that play important roles in accounting for low 
recognition efficiencies: stimulus size, spatial uncer- 
tainty, and detection efficiency. Other factors found to 
play smaller roles were the observer's internal noise, 
rendering condition (silhouette, line drawing, or 
Lambertian shading), learning, and categorization across 
viewpoints. The highest efficiencies measured, however, 
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were only about 13.5%--for small line drawings with 
spatial uncertainty (Tjan, Braje & Legge, 1994). 

In this paper, we examine the possibility that humans 
fail to use information available in the high spatial 
frequencies of the images. We also explore in greater 
detail the possibility that low recognition efficiency is a 
consequence of low detection efficiency. 

Recognition of low-pass filtered objects 

Is human efficiency low because people do not use 
information contained in the high spatial frequencies? 
We refer here to object spatial frequency, rather than to 
retinal frequency. Object frequency is expressed in 
cycles/object-height and is independent of viewing dis- 
tance. Evidence suggests that object frequency may be a 
more important determinant of performance than retinal 
frequency in complex tasks such as letter recognition 
(Parish & Sperling, 1991) and reading (Legge, Pelli, 
Rubin & Schleske, 1985). 

Several studies have examined the relative importance 
of different spatial-frequency bands for recognition. 
Ginsburg (1980) suggested that low frequencies are 
sufficient for letter and face recognition, and that high 
frequencies are redundant. Legge et al. (1985) used 
low-pass filtered text to show that low letter frequencies 
(2 cycles/letter) are sufficient for rapid reading. 

Although low frequencies may be sufficient for cer- 
tain tasks, other studies have shown that useful infor- 
mation is available at higher frequencies. For face 
recognition, Fiorentini, Maffei and Sandini (1983) found 
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that accuracy increased when high frequencies (>5  
cycles/face-width) were included, compared with low 
frequencies only. They also found that the removal of 
lower frequencies did not hurt performance, suggesting 
that high frequencies were sufficient for face recognition. 
Measuring recognition of band-pass filtered letters, 
Parish and Sperling (1991) found that contrast 
thresholds decreased as the center frequency of the band 
was increased up to 4.22 cycles/letter-height, and de- 
creased even further with high-pass filtered letters. 
Norman and Ehrlich (1987) showed that the addition of 
either low or high frequencies to a stimulus reduced the 
error rates and shortened the reaction times for identify- 
ing pictures of toy tanks, suggesting that both low and 
high frequencies provide useful information. 

These studies suggest that signals for recognition may 
be available in high-frequency bands. However, the 
envelope of the amplitude spectra of most objects drops 
with increasing spatial frequency. Thus, while these 
signals may be useful when presented in isolation, their 
signal-to-noise ratios may be too low to be useful in real, 
unfiltered images. Furthermore, efficiency may provide a 
more direct probe of the usefulness of information in 
different bands than other measures. 

The preponderance of evidence indicates that humans 
rely on, and are more efficient in the use of, low object 
frequencies in recognition. But some evidence suggests 
that humans can use high frequencies, and that high- 
frequency information can sometimes improve recog- 
nition performance. There are two ways in which the 
high-frequency content of images might aid recognition. 
First, the high frequencies may contain non-redundant 
cues, and thus additional information, for recognition. 
In many cases, however, high-frequency features are 
correlated with low-frequency features, thereby provid- 
ing little additional information. Second, even if the 
information content of the high bands is redundant, 
looking in several bands can improve performance by 
increasing the likelihood of detecting the information. 
This would be the case if the signals were correlated 
but the limiting noise was uncorrelated. For example, 
Watt and Morgan (1985) have proposed that the out- 
puts of independent channels are averaged to increase 
signal-to-noise ratio. 

If humans do not use high frequencies for object 
recognition, then removing these frequencies should 
have no effect on their recognition performance. On 
the other hand, if high frequencies do contain useful 
information for object recognition, an ideal observer's 
performance will decline when these frequencies are 
removed. The overall effect of removing high frequencies 
would be to reduce the difference between human and 
ideal performance, and hence increase human efficiency. 
In our first experiment, we tested this possibility by 

*Burgess and Colborne (1988) have shown that internal, signal- 
dependent (i.e. multiplieative) noise manifests itself as a reduction 
in sampling efficiency. If multiplieative noise is present, empirical 
estimates of sampling efficiency provide an upper bound on 
efficiency related to sampling. 

measuring efficiency for recognizing low-pass filtered 
objects. 

Detection o f  low-pass filtered objects 

Our second purpose was to determine if detection 
efficiency limits recognition efficiency. Detection 
efficiency can be conceptualized as a limitation on the 
number of signal samples encoded and used for detec- 
tion. Such sampling may be done in the spatial domain 
(e.g. image pixels), or in any other domain (e.g. spatial 
frequency). An ideal observer uses all of the signal 
samples. If humans use only a subset of the signal 
samples, then their detection efficiency will be less than 
100% (see Appendix B in Tjan et al., 1995). For 
example, if humans encode and fully utilize 10 samples 
of a signal containing 100 equal energy samples, their 
detection efficiency will be no higher than 10%.* Ex- 
pressing efficiency as subsampling relates closely to 
Fisher's original definition of statistical efficiency 
(Fisher, 1925). 

The link between recognition efficiency and detection 
efficiency depends on the nature of the subsampling 
process. Consider, for example, two different tasks: (1) 
detecting a 10 by 10-pixel square; and (2) discriminating 
this same square from a second signal, identical to the 
square except for one missing pixel in a known location. 
All pixels are equally informative for the detection task, 
because each pixel discriminates the signal from a blank 
screen. For the recognition task, however, only the 
missing pixel is informative; the other 99 pixels do not 
distinguish the two signals. Suppose a primitive detector 
can encode data from just 10 samples (pixels) per trial. 
As described above, the detection efficiency of this device 
will be no more than 10%. If the detector encodes a 
random set of 10 samples from the target area on each 
trial, its recognition efficiency will be limited to 10%. 
Because of the random sampling, the odds of encoding 
the recognition feature (i.e. the missing pixel) are only 
one in ten. In this case, recognition efficiency is limited 
by detection efficiency. 

Alternatively, suppose the device encodes its 10 
samples strategically, always including the recognition 
feature. Although its detection efficiency is still limited 
to 10%, recognition efficiency could, in principle, be 
100%. This example demonstrates that the sets of 
image samples (i.e. features) that determine detection 
and recognition efficiency are usually different. The 
relationship between recognition and detection efficiency 
will depend on the sampling "strategy" adopted by the 
visual system. Human vision may be designed to extract 
information useful for object recognition, rather than 
detection. 

In the second experiment, we compared recognition 
and detection efficiencies for the same stimuli used in the 
first experiment. The key question is whether recognition 
efficiencies can exceed detection efficiencies. We also 
examined the specific possibility of edge encoding by 
measuring detection and recognition efficiencies for line 
drawings and silhouettes of objects. If the visual system 
uses an edge-sampling strategy, several predictions can 
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be made. First, detection efficiency should be higher for 
line drawings than for silhouettes, assuming that the 
visual system makes equally efficient use of a step-edge 
(silhouette) and a line edge (line drawing). Second, for 
line drawings, sampling must necessarily be confined to 
edges, regardless of the task. Edge sampling should 
therefore yield nearly the same efficiencies for recog- 
nition and detection of line drawings. Finally, for silhou- 
ettes, an edge-sampling scheme should result in higher 
efficiencies for recognition than detection. 

METHODS 

Apparatus and stimuli 

The apparatus and stimuli are described in detail by 
Tjan et al. (1995). Briefly, targets were presented on one 
Apple monochrome monitor, and noise on another, 
allowing for independent control of contrast. The 
images on the two monitors were superimposed opti- 
cally, with a viewing distance of 1.72 m. Accurate con- 
trast control was achieved with video attenuators and 
the Video-Toolbox software (Pelli & Zhang, 1991). 

The targets were the same four 3-D objects used by 
Tjan et al. (1995), referred to as wedge, cone, cylinder, 
and pyramid. The objects were rendered in orthographic 
projection on a Stardent 2000 graphics computer, each 
from 8 viewpoints randomly selected from a viewing 
sphere. They were rendered as bright silhouettes or line 
drawings on a dark background. The entire image field 
was 452 pixels horizontally by 442 pixels vertically, 
corresponding respectively to 5 and 4.9 deg. The tar- 
get objects occupied the central 256 by 256 pixels, 
subtending 2.8 deg. 

The targets were digitally filtered with first-order 
exponential low-pass filters (see Fig. 1) using the HIPS 
software (Landy, Cohen & Sperling, 1984). The filters 
had 1/e bandwidths of 0.5, 1.5, 3.6, and 42 cycles per 
average object-height (cy/ob). Unfiltered targets, with a 
Nyquist frequency of 128cy/ob, were also tested. 
Examples of these stimuli are shown in Fig. 2. 

The targets were optically superimposed with 
unfiltered 2-D static Gaussian luminance noise. The 
two-sided vertical and horizontal bandwidths of the 
noise were 91.4 cy/deg (256 cy/ob). The noise had a mean 
luminance of 7.1 cd/m 2 and a standard deviation of 
3.6cd/m 2, measured at the subject's eye. The corre- 
sponding spectral density (noise energy per unit band- 
width) was 27.0#(deg 2) [3.5.10-6ob 2, or 3.5/t(ob2)]. 

After combination of the target and noise screens by 
the optical apparatus, the mean luminance of the back- 
ground field was 7.5 cd/m 2, and the luminance of the 
brightest target pixel ranged from 7.6 to 9.0cd/m 2, 
depending on signal energy. Viewing was monocular. 

Procedure 

There were twelve experimental conditions, each 

*For the 0.5 cy/ob conditions, the recognition task was extremely 
difficult, and the thresholds were very high. Thus only one staircase 
was run for each rendering condition at this bandwidth. 
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FIGUR E 1. Five exponential low-pass filters were used to create the 
stimuli. 1/e bandwidths were 0.5, 1.5, 3.6 and 42 cy/ob. Unfiltered 
images have a Nyquist frequency of  128 cy/ob. The filters are of  the 
form e -I/c, whe re f i s  the input frequency and c is the bandwidth of  the 

filter (i.e. the frequency at which the gain is l/e). 

consisting of one of the two rendering conditions and 
one of the six filtering conditions. Each block of recog- 
nition trials was devoted to one of these twelve con- 
ditions. The blocks were presented in the same random 
order to each subject. Before each block of trials, 
observers were shown all images that would be presented 
in that block. The images were shown without noise, 
once at a high signalenergy, and once at the starting 
signal energy of the experiment. 

On a recognition trial, one of the 32 images was 
randomly selected and displayed on the monitor for one 
second. The observer's task was to indicate which of the 
four objects had been presented by pressing one of four 
keys. The observer was not required to indicate which of 
the eight object views had been presented. No feedback 
was given. Between trials, the observer saw a uniform 
screen with no noise and with a luminance of 7.5 cd/m 2. 
The beginning of a new trial was signaled by a brief 
tone. 

An adaptive staircase was used to estimate the 
threshold signal-to-noise ratio (E/N), defined as the 
signal-to-noise ratio at which subjects obtained 79% 
correct recognition (Wetherill & Levitt, 1965). The 
"signal" refers to signal energy (E), equal to the squared 
RMS contrast multiplied by the image area; the "noise" 
refers to noise spectral density (N), or noise energy per 
unit bandwidth. Signal energy was changed by increas- 
ing or decreasing the peak luminance of the object screen 
by 0.22 dB (5%). The noise spectral density was not 
changed. The staircase terminated after 14 reversals, and 
the threshold E/N was estimated as the mean E/N of 
the last 12 reversals. Each staircase contained roughly 
100 trials. Three staircases were run for each experimen- 
tal condition except the 0.5cy/ob bandwidth con- 
ditions.* The thresholds obtained from each staircase in 
a condition were averaged. 

In the detection experiment, the observer performed a 
"yes/no" task. A "blank" image (a uniform field of 
7.5 cd/m 2) was presented in noise for one second on a 
random one-half of the trials, and object images, drawn 
at random from the set of 32, were presented on the 
other half of the trials. Between trials, the observer saw 
a uniform screen with no noise and with a luminance 
of 7.5 cd/m 2. The observer indicated whether or not an 
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F I G U R E  2. A wedge rendered as a line drawing (left column) and a cylinder rendered as a silhouette (right column), shown 
without noise. From top to bottom, objects are shown unfiltered, low-pass filtered with a 6 cy/ob filter, and low-pass filtered 

with a 1.5 cy/ob filter. 

object had been presented (but not which object) by 
pressing one of  two keys. No feedback was given. 
Although we did not take into account the decision 
criterion used by the human observers, we were able 
to determine that any response bias present did not 
greatly affect our results or alter our conclusions.* The 

*If we make the simplifying assumption that  the task is to discriminate 
between two equal-variance Gaussian distributions, then an unbi- 
ased observer's proportions of  "yes" and "no"  responses will equal 
the a pr ior i  probabilities of  the respective presence and absence of  
the signal, 0.5 in our case. This was the case for observer BT but 
not  WB. WB responded "yes" 37% of  the time and "no"  63% of  
the time on average, indicating a conservative bias. This bias had 
only a very small effect on efficiency. First, the efficiencies of  the 
two observers were very similar. Second, given our assumption,  the 
ratio of  the unbiased efficiency of  WB to that o f  BT is equal to the 
squared ratio of  d '  (i.e. the difference between the z-scores of  hit 
and false-alarm rates, which provides a criterion-free measure of  
sensitivity) for each subject. This squared d '  ratio was 1.01. 
Knowing that BT was unbiased, we can compute the unbiased 
efficiency of  WB by multiplying BT's measured efficiency by this 
squared d '  ratio. When we do this, we find that WB's  unbiased 
efficiency is only 1.02 times the measured efficiency, which is not  
large enough to alter any o f  our conclusions. 

beginning of a new trial was signaled by a brief tone. The 
detection procedure employed the same staircase pro- 
cedure that was used in the recognition experiment. 
Three such staircases were run for each experimental 
condition, and the thresholds obtained in each condition 
were averaged. 

Human observers 

Two of the authors served as subjects. Both had 
normal or corrected vision with Snellen acuity in the 
tested eye of 20/20. Both were very familiar with the 
stimuli and were highly practiced on the tasks. 

Ideal observer 

The measurement of statistical efficiency involves the 
comparison of  human performance to ideal perform- 
ance. The ideal observer uses an algorithm that is 
optimal in the sense that it uses all of  the available 
information to maximize performance on a particular 
task. The comparison is usually meaningful only when 
the ideal observer's performance is held below 100% 
correct by some source of  uncertainty in the stimulus. In 
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our experiments, uncertainty was introduced by adding 
luminance noise to the stimuli. 

We used the same ideal observer described in detail by 
Tjan et al. (1995). The ideal observer was formulated as 
a modified template matcher. For the recognition task, 
it stores the set of 32 2-D orthographic image projections 
used in the experiment (4 objects, each with 8 views). The 
appropriate filtered templates were used in our exper- 
iments. In a simulated trial, the ideal observer is pre- 
sented with one of the images plus luminance noise, and 
it compares this noisy image with each of the 32 
templates. For each object, the ideal observer computes 
the a posteriori probability of that object by summing the 
a posteriori probabilities of its eight views. It then 
responds with the object with maximum probability. 
Note that this is different from selecting the object that 
corresponds to the single template providing the best 
match, which would be a sub-ideal decision rule. Math- 
ematically, the ideal observer chooses the object that 
maximizes the following function, which is monotonic to 
a likelihood function: 

L'(i) = exp - ~ a  2 - ; 
j = l  k = l  

where 

R = input image as an array of contrast values, 
T~ = template of object i at view j, 
tr = standard deviation of noise contrast, 
p = number of pixels per image. 

The detection experiment is formulated as a special 
kind of recognition experiment. There are two target 
categories, an object and a blank. The object has 32 
"views," corresponding to the 32 object images used in 
the recognition experiment. The blank has one image, a 
uniform gray screen, which occurs on roughly half of the 
trials. In a simulated trial, the ideal observer is presented 
with either an object or blank in luminance noise. It 
computes the a posteriori probability of an object by 
summing the a posteriori probabilities of its 32 views, 
and, likewise, the a posteriori probability of a blank. In 

the above equation, i ranges from 1 to 2 (object or 
blank), and j ranges from 1 to 32. The ideal observer's 
task is to choose the category (object or blank) that has 
the higher a posteriori probability. 

The ideal observer used a binary search algorithm (see 
Tjan et al., 1995), adjusting the signal energy iteratively, 
to find its threshold for a given task. As with the human 
observers, the ideal observer's threshold is the signal-to- 
noise ratio (E/N) at which the algorithm yields 79% 
correct. 

Efficiency 
The threshold E/N was determined for human and 

ideal observers. Because the noise spectral density is the 
same for both human and ideal observers, efficiency is 
simply the ratio of the threshold signal energies, that is, 
the ideal observer's signal energy (EI) divided by the 
human's signal energy (E.): 

efficiency = (EI)/(EH). 

A ratio of 1 (or 100%) represents ideal performance. 

RESULTS AND DISCUSSION 

Recognition of  low-pass filtered objects 

The purpose of the recognition experiment was to 
determine whether the low efficiency for object recog- 
nition was due to the human observers' failure to use 
high-frequency information used by the ideal observer. 
The results of the recognition experiment suggest that 
this does not account for the inefficiency. 

Figure 3 shows human and ideal observer threshold 
signal-to-noise ratios (E/N) for recognition of low-pass 
filtered stimuli. E/N  is plotted as a function of filter 
bandwidth for line drawings and silhouettes. 

We first consider the performance of the ideal ob- 
server. In both rendering conditions, the ideal observer's 
thresholds increased as object bandwidth decreased from 
6 to 0.5 cy/ob. This rise reflects a decline in the "quality" 
of information from 6 to 0.5 cy/ob. By "quality" of 
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FIGURE 3. Threshold signal-to-noise ratio (E/N) for recognizing (a) line drawings and (b) silhouettes, plotted as a function 
of filter bandwidth for 2 human subjects and the ideal observer. Each data point for the human observers shows the mean 

of 3 thresholds.  Standard errors are plotted but are smaller than the plot symbols. 
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FIGURE 4. Human effieiencies for recognizing (a) line drawings and (b) silhouettes, plotted as a function of  filter bandwidth. 
Each data point shows the mean of  3 observations. Standard errors are plotted but are often smaller than the plot symbols. 

information, we mean how easily the objects can be 
distinguished with a given amount of signal energy. For 
example, our ideal observer's recognition thresholds 
show that a unit of signal energy in the band of 
frequencies between 3 and 6 cy/ob is more useful for 
distinguishing the objects than is a unit of signal 
energy at lower frequencies. At higher frequencies 
(6-128 cy/ob), the ideal observer's thresholds remained 
roughly constant across frequency. One possible in- 
terpretation of this result is that information quality is 
constant within this range of frequencies. However, 
the average amplitude spectrum of the set of objects 
falls off as  1 / f  1"46 for silhouettes and 1/f T M  for line 
drawings. Because the signal energy is so low at high 
frequencies, changes in information quality may not be 
noticeable. The high frequencies therefore make a small 
contribution to the ideal observer's overall performance, 
regardless of how useful they are for distinguishing the 
objects. 

Human thresholds follow trends similar to those of 
the ideal observer. Human thresholds were nearly con- 
stant for bandwidths above 6 cy/ob, with signal-to-noise 
ratios averaging about 102.36 for line drawings and 103"1~ 
for silhouettes. Decreasing the bandwidth below 6 cy/ob 
increased human thresholds. 

Efficiency measures can tell us whether the human 
performance in Fig. 3 is explained by informational 
constraints in the stimuli or processing limitations within 
the human. Recognition efficiencies (ideal thresholds 
divided by human thresholds from the curves in Fig. 3) 
are plotted in Fig. 4 as a function of filter bandwidth. 
For bandwidths of 6 cy/ob or greater, efficiency was 
constant for line drawings (3.75%) and silhouettes 
(3.23%). This indicates that, contrary to our prediction, 
efficiency did not increase as high frequencies were 
removed. 

For line drawings, there was a very small but statisti- 
cally significant increase in efficiency between unfiltered 

*Tjan e t  al. (1995) found a small but statistically significant difference 
in efficiency for recognizing silhouettes vs line drawings. The reason 
for this discrepancy is unknown. 

objects and objects filtered at 42 cy/ob (confirmed by a 
Tukey HSD test, ~ = 0.01). This increase is in agreement 
with our prediction, but is not large enough to account 
for the generally low efficiencies. 

A sharp decrease in efficiency occurred as filter band- 
width decreased from 6 to 1.5 cy/ob. This drop reflects 
the fact that human thresholds rose more rapidly than 
ideal observer thresholds as bandwidth decreased in this 
frequency range. The rapid change in efficiency suggests 
that humans make more effective use of information in 
the range from 1.5 to 6cy/ob. At the very lowest 
bandwidth studied (0.5 cy/ob), efficiency was nearly 0%. 
This means that the ideal observer could make use of 
very coarse luminance cues that humans do not use in 
recognition. An analysis of variance performed on the 
efficiencies (excluding the 0.5 cy/ob filter condition) sup- 
ports the finding that filter bandwidth affected efficiency 
[F(4,20) = 65.06, P < 0.01]. 

Efficiencies (averaged over all filter bandwidths) were 
higher for recognizing line drawings than silhouettes 
[F(1,20)= 19.83, P <0.01]. A Tukey HSD test 
(~ = 0.05) revealed that this difference existed for filtered 
(3, 6 and 42 cy/ob) but not unfiltered (128 cy/ob) stim- 
uli,* showing that human recognition of blurred stimuli 
is better for line drawings than silhouettes. One possible 
explanation for better performance with line drawings is 
that they contain fewer pixels than silhouettes. If hu- 
mans can encode only a limited number of image 
samples, then reducing the number of samples in the 
stimulus should increase human efficiency. This is con- 
sistent with the present results for filtered stimuli, as well 
as with the findings of Tjan et al. (1995), who obtained 
higher efficiencies for recognizing small silhouettes 
(0.7 deg) than large silhouettes (2.8 deg). However, Tjan 
et al. (1995) found that recognition efficiency was sub- 
stantially higher for small silhouettes than for line 
drawings containing approximately the same number of 
pixels. Furthermore, the present results showed no 
difference between line drawing and silhouette recog- 
nition with unfiltered stimuli. Thus, the higher efficiency 
for recognizing line drawings is not simply due to the 
reduced number of image samples. 
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The data indicate that human recognition efficiency is 
quite low, even for low-pass filtered stimuli, when com- 
pared to efficiencies obtained in other complex percep- 
tual tasks (see the Introduction). There is little evidence 
that the low efficiency is a consequence of a failure to use 
high-frequency information. Coupled with the findings 
on ideal observer performance at high frequencies, the 
human results show that the failure of  humans to 
improve recognition performance at high frequencies is 
due to properties of  the stimuli, not limitations of  human 
processing. In other words, object recognition (at least 
our version of it) is a low-frequency task. 

Recognition of band-pass filtered objects 
The decline in efficiency at low bandwidths means that 

the ideal observer used some low-frequency information 
not used by humans. This raises the possibility of  
increasing human recognition efficiency by filtering out 
very low frequencies. To test this possibility, we 
measured human efficiency for recognizing band-pass 
filtered objects. The band-pass filtered images were 
constructed by (1) low-pass filtering our objects with the 
6 cy/ob exponential filter, and then (2) high-pass filtering 
the resulting image with a first-order exponential filter. 
We used two high-pass filters, with cut-offs of  0.5 and 
1.5cy/ob. The resulting band-pass filters had center 
frequencies of  1.7 and 3.0 cy/ob, respectively. These are 
plotted in Fig. 5. 

Recognition efficiencies for the band-pass filtered 
stimuli are shown in Fig. 6, along with data for 6 cy/ob 
low-pass filtered objects. There was a statistically signifi- 
cant increase in efficiency for recognizing the band-pass 
filtered objects compared with the low-pass filtered 
objects, but the effect was very small [F(2,12)= 11.39, 
P < 0.01]. Clearly, people's failure to use information 
in very low frequencies does not account for the overall 
low recognition efficiency. 

Detection of low-pass filtered objects 
In the second experiment, we compared object 

recognition and detection efficiencies. Fig. 7 plots human 
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FIGURE 5. Two band-pass filters, centered at 1.7 and 3.0 cy/ob. The 
filters are of the form Ae¢-f/% <-c/~. A is a factor (different for each 
filter) that scales the luminances of the resulting images to fill the entire 
0-255 range, and f is the input frequency. The first exponential term 
is the 6 cy/ob low-pass filter used in the low-pass recognition exper- 
iment. This is multiplied by a high-pass filter of bandwidth c (the 
frequency at which the gain is l/e). c is 0.5 for the first filter and 1.5 
for the second filter. A small amount of DC is added to each image 

such that no negative luminance is present. 

and ideal observer threshold signal-to-noise ratios (E/N) 
for detection as a function of  filter bandwidth. Human  
detection thresholds were nearly constant for band- 
widths above 3 cy/ob. The ideal observer's thresholds 
were approximately constant across all frequencies. Its 
performance reflects the fact that all frequencies are 
equally informative for this detection task. Because the 
task is to determine whether or not a signal is present, 
the ideal observer's performance depends only on the 
total amount  of  signal energy, regardless of  how this 
energy is distributed across frequency. 

Recognition and detection efficiencies are plotted in 
Fig. 8. The results are consistent with the use of  an 
edge-sampling strategy, as outlined in the Introduction. 
First, detection efficiency was higher for line drawings 
than for silhouettes (Fig. 8a vs b, and c vs d). Second, 
Figs 8a and c show that, for bandwidths above 1.5 cy/ob, 
line drawing recognition efficiencies are very similar to 
detection efficiencies. Although there was a statistically 
significant difference between these efficiencies (paired 
one-tailed t-test, ct < 0.05, 29 d.f.), the difference was 
quite small, with line drawing detection efficiencies about  
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FIGURE 6. Efficiency for recognizing low-pass (LP) and band-pass (BP) filtered objects rendered as (a) line drawings and 
(b) silhouettes. The low-pass filter had a l/e bandwidth of 6 cy/ob; the two band-pass filters were centered respectively at 1.7 

and 3.0 cy/ob. Each data point shows the mean of 3 observations. Standard errors are plotted. 
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FIGURE 7. Threshold signal-to-noise ratio (E /N)  for detecting (a) line drawings and (b) silhouettes, plotted as a function 
of filter bandwidth for 2 human subjects and the ideal observer. Each data point for the human observers shows the mean 

of 3 thresholds. Standard errors are plotted but are smaller than the plot symbols. 

1.2 times higher than recognition efficiencies. Finally, 
for silhouettes (8b and d), recognition efficiencies were 
substantially higher (2.6 times on average) than detec- 
tion efficiencies for bandwidths above 1.5 cy/ob (paired 
one-tailed t-test, ~ <0.001, 29d.f.). These results 
demonstrate that detection efficiency does not place 
a ceiling on recognition efficiency. They are consistent 
with a visual-processing strategy that samples recog- 
nition-relevant features, such as bounding contours, 

rather than sampling image data across relatively 
uniform regions. 

S I M U L A T I O N  

The comparison of recognition and detection efficien- 
cies suggests that the human visual system tends to 
sample image features that are relevant to recognition, 
such as edges• How can this selective sampling be 
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F I G U R E  9. The narrow-band observer. The object target and luminance noise pass through a linear band-pass filter. Internal 
noise is then added. The observer compares the stimulus to its filtered templates and determines which object provides the 

best match. 

implemented before the object's identity is known? One 
possibility is a bottom-up strategy, in which an appro- 
priate spatial-frequency channel is used to pick out 
informative features. For example, recent results of 
Solomon and Pelli (1994) suggest that a band-pass 
channel mediates letter recognition. 

To test the plausibility of this idea for object recog- 
nition, we programmed a simulated observer that views 
our low-pass filtered stimuli through a noisy band-pass 
filter, as diagrammed in Fig. 9. This observer is not 
intended as a quantitative model of human performance, 
but is instead used to demonstrate that the qualitative 
characteristics of our human data can be obtained using 
a band-pass channel. The input stimulus, comprised of 
external Gaussian white noise added to an object target, 
first passes through a linear band-pass filter. Internal 
Gaussian white noise is then added after filtering. This 
non-zero level of internal noise is necessary for the filter 
to have an effect. If there were no noise beyond the filter, 
the filter would not change the signal-to-noise ratio 
(both target and external noise would be attenuated by 
the same factor at every frequency), and performance 
would be unaffected.* The observer matches the filtered 
target plus internal noise to its stored templates, which 
are filtered with the same band-pass filter. 

When white noise, consisting of uncorrelated image 
samples in the space domain, is passed through a 
band-pass filter, nearby pixel values in the filtered image 
have correlated values. In this case, the formulation of 
an ideal observer can not be done easily in the space 
domain. A nearly-ideal observer (see Appendix), how- 
ever, can be formulated in the Fourier domain. In an 
unpublished manuscript, Chubb, Sperling and Parish 
(1988) derived a nearly-ideal observer for one-dimen- 
sional filtered signals in filtered noise. In the Appendix, 
we summarize this derivation, extend it to two-dimen- 
sional images, and formulate our narrow-band 2-D 
observer. 

*Note that, if the filter is rectangular, there is no need for internal 
noise. 

If the human visual system also uses this type of 
band-pass mechanism for object recognition and detec- 
tion, then the narrow-band observer's pattern of efficien- 
cies should be qualitatively similar to the humans': its 
recognition efficiency should exceed its detection 
efficiency in the case of silhouettes but not line drawings. 

We programmed three different narrow-band observ- 
ers, each of which used a different band-pass filter. The 
three filters were filters A, B, and C proposed by Wilson, 
McFarlane and Phillips (1983). These filters (plotted in 
Fig. 10) are centered at (A) 1.9 cy/ob (0.8 cy/deg), (B) 
4.1cy/ob (1.7cy/deg), and (C) 6.7cy/ob (2.8cy/deg). 
The filters were chosen because they are based on human 
data, and because they cover the range of frequencies we 
found to be important for recognition. We set the 
internal noise spectral density to 0.2 ~t (deg2.) (determined 
from human data in Tjan et al., 1995). Each of the three 
narrow-band observers performed the tasks of recogniz- 
ing and detecting our low-pass filtered objects (see the 
Methods for a description of the stimuli and procedures 
used). 

The results are plotted in Fig. 11. The recognition 
efficiency of all three narrow-band observers was equal 
to or higher than the detection.efficiency in both render- 
ing conditions. The most notable similarity to our 
human efficiencies is that, for the filter-C observer, this 
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FIGUR E 10. Band-pass filters used for the narrow-band observers. 
The filters are taken from Wilson et  al. (1983). They are centered at 
(A) 1.9 cy/ob (0.8 cy/deg), (B) 4.1 cy/ob (1.7 cy/deg), and (C) 6.7 cy/ob 

(2.8 cy/deg). 
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FI G U RE  11. Efficiencies of  3 different narrow-band observers, relative to the broad-band ideal observer, for recognizing and 
detecting low-pass filtered silhouettes and line drawings. 

difference was much larger for silhouettes than for line 
drawings. Thus, an observer viewing the world through 
a band-pass filter centered at 6.7 cy/ob does perform 
similarly to humans in one important way: recognition 
performance is enhanced at the expense of detection 
performance. Our simulation shows that this can be 
accomplished by the use of a simple linear band-pass 
mechanism. 

The filter-B observer, which is centered within the 
range we found to be most important to human observ- 
ers (1.5-6 cy/ob), also shows evidence of this difference 
between line drawings and silhouettes, but the difference 
is not as striking. The filter-B observer's graph of 
efficiency vs stimulus bandwidth is very similar in shape 
to human efficiencies (Fig. 8), rising at low frequencies 
and leveling off at high frequencies, but its efficiencies are 
generally higher than human efficiencies. 

Our simulation of an ideal observer who views the 
world through a single band-pass spatial-frequency 
filter, though not capturing all of the quantitative 
details of our human data, does account for some of 
their qualitative features. In particular, it illustrates 
that band-pass mechanisms enhance recognition 
performance at the expense of detection performance. 

CONCLUSIONS 

We examined two possible explanations for the low 
object recognition efficiencies observed by Tjan et al. 

(1995) by low-pass filtering our stimuli and measuring 
recognition and detection efficiencies. Recognition 
efficiency failed to increase when high frequencies were 
removed from the stimuli, showing that the expla- 
nation does not lie in humans' failure to use these 
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frequencies. We also found that efficiency for object 
recognition can be higher than efficiency for object 
detection, implying that recognition was not limited by 
the detectability of the stimulus. Rather, it suggests a 
sampling scheme favorable for recognition, such as 
contour sampling. Finally, our simulation of an ideal 
observer with a narrow-band front end argues that 
spatial-frequency channels function to extract features 
relevant to recognition, not detection. 
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APPENDIX 

Our simulated narrow-band observer is modeled as an ideal observer 
viewing the world through a linear band-pass filter. This Appendix 
gives the formulation of such a model. We restate Chubb et al.'s (1988) 
key result and extend it to our two-dimensional application. We then 
formulate our narrow-band'model. We assume readers are familiar 
with the space-domain formulation of the ideal observer (see Tjan 
et al., 1995). 

Fourier transform of Gaussian noise 

Chubb et aL (1988) proved that in the limit, Gaussian noise in the 
space domain has Gaussian coefficients in the frequency domain. 
Consider discrete one-dimensional noise represented as an array of real 
numbers (Xk), k = 1,2,3 . . . . .  D. The discrete Fourier transform ~[¢,] 
of this noise is 

1 D 
#Its] = -- ~ X k exp(-i2ntok/D), coE{0,1,2 . . . . .  D/2} 

Ok=l 
(1) 

1 o _1 o 
= O k~tT_ Xk cos(2nogk/O ) + i ~1.) k=l ~" Xk sin(2neok/D ). 

k _ _  ) ~ _ _  _ _ J  

We deliberately omit the negative frequencies from --D/2 to - 1 in our 
formulation. Since our signals are real values, the Fourier coefficient 
at a negative frequency is just the complex conjugate of its positive 
counterpart, and thus carries no extra information. 

Chubb et al. showed that, if (Xg) are jointly independent, identically 
distributed normal random variables,* each with mean 0 and variance 
a 2, then all the real parts (R[~o]) and imaginary parts (I[o~]) of q,[o~], 
for co = 0,1 . . . . .  D/2, will also be jointly independent. When D is 
sufficiently large, q~[~o] will tend towards the following distribution: 

(Rto], l[t~l) 
D~o0 

~ (e,e') for positive integers co < D/2 

O" 
. ~  (e,O) for co = 0 or (with D even) for D/2 (2) 

where e and e' are jointly independent standard normal random 
variables. 

We can extend this result to noise in two dimensions. Let (X,,,), 
m = 1 . . . . .  Dx, and n = 1 . . . . .  Dy be a two-dimensional array of 
jointly independent and identically distributed normal random vari- 
ables with mean 0 and variance 02. The discrete Fourier transform of 
<X,,.> is given by: 

l_ o, 
mto~x,o, yl = Z 

Dyn=l 

- 1 o~ -] 
exp( -  i2ntoyn /D y) ~-  ~ X,,, exp( - i2~ogxm /D~) / Dxm=l 

An 

for integers ~OxE{0,1 . . . . .  Dx/2} (3) 

and (ayE{-(Dy/2) + I . . . . .  - 1,0,1 . . . . .  Dy/2}. 

As in the one-dimensional case, only one half of the frequency domain 
is considered; the other half is simply its complex conjugate. The inner 
summation term A,[cox] is the one-dimensional discrete Fourier trans- 
form of ( X _ ) ,  identical to the expression in equation (1). Therefore, 
if we let RA,[~ox] and IA,[o~x] be the real and imaginary parts of A,[~ox] 

*Chubb el al.'s result is actually more general and allows any 
distribution whose third moment is zero. 
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respectively, from equation (2) we know that they are jointly 
independent with the following normal distributions: 

) 
D~-~eo 

f a (e,e,) for positive integers ~o~ < Dff2 
x/2D~ 

~ (e,0) for ~0~ = 0 or (with D~ even) for Dff2. (4) 

Expanding equation (3) in terms of RA.[o~] and IA.[e)~], and 
regrouping its real and imaginary terms, we have: 

~[o~x, coy I = ~ -  ~ RA,[cojcos(2nCOyn/D,) 
~yn~l 

1 Dy 
+ i - -  ~. IAn[t.Ox]COS(2~zogrn/Dy ) 

Oyn=l 
.( 

~Io~ , ~ ] 

1 Dy 
- - i ~ -  ~ RA.[~o~]sin(2~rooin/Dy ) 

l~y n= I 
t ) ,y 

1 Dy 
+'~-  ~ IA.[ox]sin(2no~rn/Dy) 

IJyn=l 
Y 

= S[co~, or] + V[w~, toy] + i(T[o~, coy] -- U[ogx, ogy]). 
Y ~c 

Riot, ~oy ] 11<o~. co r ] 

(5) 

Note that the summation terms S, T, U, and V share the same form 
as R and I in equation (1). By applying equation (2) to these terms and 
noting that RA,  and IA,  are jointly independent (equation 4), we can 
conclude that these summation terms are themselves jointly indepen- 
dent random normal variables. Their distributions for non-negative ~o~ 
and coy can be determined by a straightforward application of equation 
(2), with a replaced by the standard deviations given in equation (4) 
and considering all distinct cases of ~0~ and oJ r. 

Also note that the real (R [co~,o~r]) and imaginary (l[COx,O~y]) parts of 
[Ox,~Or] are respectively the sum and difference of jointly independent 

normal variables: R = S + V and I = T - U. Therefore, they are also 
jointly independent and normal, with a variance equal to the sum of 
the variances of their constituency. 

Lastly, we want to show that R [oJ~,o~r] and l[o~,~or] for negative % 
are also jointly independent with the rest. This can be done by 
observing for 1 <~ % <~ Dy/2, 

R[wx,O~r] = S[e~x,e~r] + V[O~x,O~e] and 

R[o~,-o~ r] = s [ ~ o : ,  3 - vtox,co,.]. 

Since S and V are jointly independent and identically distributed 
in the range, so are S +  V and S - V .  This is because 
E[(S + V)(S - V)] = E[S 2] - E I V  2] = O. 

Finally, we can summarize the distribution of the real and imaginary 
parts of the discrete Fourier transform of two-dimensional Gaussian 
noise with standard derivation a as: 

For integers ~o~ and ogr, 

I a ( ~ e ,  ) i f 0 < t g ~ D f f 2 o r  
0 <my< Dff2 

O" ~'-~ ~ . | ~ ( , , 0 )  if (o~,cor)=(0,0),(0, Dff2), 
(Dx/2, O) or (Dx/2, Dr~2). (6) 

Narrow-band observer 

The result of equation (6) allows us to formulate an ideal observer 
in the Fourier domain, which is needed for our narrow-band observer. 
In the space domain, the signal-plus-noise seen by the ideal observer 
can be expressed as 

(s + n~)*b + n , =  s*b + n : b  d- n i (7) 
k.....W.-.--2 k v-.....-~ 
filtered signal noise 

where 

s = signal (a view of an object), 
n e = external Gaussian noise added to the display, 
b = band-pass filter kernel used by the observer, 
n~ = Gaussian noise internal to the observer. 

Using upper-case letters to represent the discrete Fourier trans- 
form of their lower-case counterparts, we can express the same 
signal-plus-noise in the Fourier domain as 

(S + N~)B + N~= SB + N~B + N r 

filtered signal noise 

(8) 

Convolution in the space domain is a simple pointwise multiplication 
in the Fourier domain. Therefore, unlike in the space domain, the 
neighboring pixels of the external noise expressed in the Fourier 
domain are not correlated after filtering. 

From equation (6), we know that both Ne and N~ are independent 
Gaussian random variables, so the combined noise term is also 
Gaussian and independent for all frequency points. If we take the 
filtered signal (SB) as the "signal," we are back to the familiar case of 
signal discrimination in Gaussian noise, and the formulation by Tjan 
et al. (1995) applies. The ideal decision rule is similar to that stated in 
the Methods section with two exceptions: (1) the variance of the noise 
changes from frequency point to frequency point according to the 
MTF of the band-pass filter, and (2) half of the frequency "image" 
consists of the real parts of the Fourier coefficients, and the other half 
consists of the imaginary parts. This is because the real and imaginary 
parts are jointly independent (equation 6). To be precise, the ideal 
decision rule for the narrow-band observer is to choose the object i that 
maximizes the expression 

I Dx Dy 

L ' ( i ) =  j = l  ~ exp --~ /~ -o, \ 

(Ra~ B[tox,~y])+ (Ra~,[og~,~or]) J ] (9) 

where 

# views = number of views per object 
(8 for recognition, 32 for detection), 

X = input image (X[~ox,o~y ] = (S + Ne)B + N,), 
T~B = filtered templates of object i view j, 

[1""'[[ = modulus of a complex number, 
R = real part of a term, 

aneB = SD of the filtered external noise in the Fourier domain 

aN~ = SD of the internal noise in the Fourier domain. 

Only the real parts of the noise are used in the expression. This is 
because (l) the imaginary parts have the same distributions as do the 
real parts, except at the corners of the DC and Nyqulst frequencies (see 
equation 6) where they diminish to zero; and (2) at those corners, the 
imaginary parts of both the signal and template are zero, thus 
removing the imaginary parts from the summation. 


